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Introduction

Introduction I

We shall describe a new approach to Morse–Bott theory, called virtual
Morse–Bott theory, that applies to singular (real or complex) analytic
spaces that arise in gauge theory, including moduli spaces of

SO(3) monopoles over closed smooth four-manifolds,

Stable holomorphic pairs of bundles and sections over closed complex
Kähler surfaces,

Higgs pairs over closed Riemann surfaces,

and potentially other non-smooth moduli spaces too.

Such moduli spaces over complex Kähler surfaces or Riemann surfaces are
complex analytic spaces (locally equivalent to complex analytic varieties),
with Kähler metrics and Hamiltonian circle actions.
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Introduction

Introduction II
For a smooth four-manifold that is almost Hermitian (as are
four-manifolds of Seiberg–Witten simple type), where

the almost complex structure is not necessarily integrable and

the fundamental two-form defined by the almost complex structure
and Riemannian metric is not necessarily closed,

one can still show that the moduli space of SO(3) monopoles is a real
analytic space and (after some work) that it is almost Hermitian [13].

Such almost Hermitian, real analytic moduli spaces carry a circle action
compatible with the almost complex structure and Riemannian metric and
a corresponding Hamiltonian function to which a sharper version of our
virtual Morse–Bott theory method applies.

We shall outline how virtual Morse–Bott theory may help prove the
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Introduction

Introduction III
Conjecture 1.1 (Bogomolov–Miyaoka–Yau (BMY) inequality for
4-manifolds with non-zero Seiberg–Witten invariants)

If X is a closed, oriented, smooth 4-manifold with b1(X ) = 0, odd
b+(X ) ≥ 3, and Seiberg–Witten simple type with a non-zero
Seiberg–Witten invariant, then

c1(X )2 ≤ 9χh(X ). (1)

Yau [62] proved (1) for a compact Kähler surface X with ample canonical
bundle using his existence of a Kähler–Einstein metric whose Ricci
curvature is a negative constant [63] and a Chern–Weil inequality [59].

Simpson [54] proved (1) for such surfaces by solving the Yang–Mills–Higgs
equation on a stable Higgs bundle of rank 3 over X and applying the
Bogomolov–Gieseker inequality [37, 42].
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Introduction

Introduction IV

If X obeys the hypotheses of Conjecture 1.1, then it has an almost
complex structure J [40] and in the inequality (1), which is equivalent to

c1(X )2 ≤ 3c2(X ),

the Chern classes are those of the complex vector bundle (TX , J).

Inequality (1) was proved independently by Miyaoka [46] using methods of
algebraic geometry.

Conjecture 1.1 is based on [55, Problem 4] (see also Kollár [39]), though
often stated for simply connected symplectic 4-manifolds — see Gompf
and Stipsicz [23, Remark 10.2.16 (c)] or Stern [55, Problem 2].

To put (1) in perspective, any closed, oriented, topological 4-manifold with
b1(X ) = 0 has c1(X )2 ≤ 10χh(X )− 1, using b−(X ) ≥ 0.
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Frankel’s Theorem for smooth almost Hermitian manifolds

Frankel’s Theorem for the Hamiltonian function for a
circle action on a smooth almost Hermitian manifold
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Frankel’s Theorem for smooth almost Hermitian manifolds

Frankel’s Theorem for almost Hermitian manifolds I

The version of Frankel’s Theorem [21, Section 3] that we prove and apply
in [12] is more general because we allow for circle actions on closed,
smooth manifolds (M, g , J) that are only assumed to be almost Hermitian,
rather than (almost) Kähler. Hence,

the almost complex structure J need not be integrable and

the fundamental two-form ω = g(·, J·) defined by the compatible pair
(g , J) is non-degenerate but not required to be closed,

whereas Frankel assumed in [21, Section 3] that ω was closed.

Frankel notes [21, p. 1] that the main results of his article hold when ω is
a g -harmonic, symplectic form.
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Frankel’s Theorem for smooth almost Hermitian manifolds

Frankel’s Theorem for almost Hermitian manifolds II

Recall that J ∈ C∞(EndR(TM)) is an almost complex structure on M if

J2 = −idTM

and J is orthogonal with respect to or compatible with a Riemannian
metric g on M if

g(JX , JY ) = g(X ,Y )

for all vector fields X ,Y ∈ C∞(TM).
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Frankel’s Theorem for smooth almost Hermitian manifolds

Frankel’s Theorem for almost Hermitian manifolds III

Theorem 1 (Frankel’s Theorem for circle actions on almost Hermitian manifolds)

(Compare Frankel [21, Section 3].) Let (M, g , J) be a finite-dimensional, smooth,
almost Hermitian manifold with fundamental two-form ω = g(·, J·). Assume that
M has a smooth circle action ρ : S1 ×M → M and let ρ∗ : S1 × TM → TM
denote the induced circle action on the tangent bundle TM given by
ρ∗(e

iθ)v = D2ρ(e iθ, p)v, for all v ∈ TpM and e iθ ∈ S1. Assume that the circle
action is orthogonal with respect to g and compatible with J in the sense that

g
(
ρ∗(e

iθ)v , ρ∗(e
iθ)w

)
= g(v ,w) and Jρ∗(e

iθ)v = ρ∗(e
iθ)Jv ,

for all p ∈ M, v ,w ∈ TpM, and e iθ ∈ S1.

Assume further that the circle action is Hamiltonian in the sense that there exists
a function f ∈ C∞(M,R) such that df = ιXω, where X ∈ C∞(TM) is the vector
field generated by the circle action, so Xp = D1ρ(1, p) for all p ∈ M and

ιXω(Y ) = ω(X ,Y ) = g(X , JY ), for all Y ∈ C∞(TM).
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Frankel’s Theorem for smooth almost Hermitian manifolds

Frankel’s Theorem for almost Hermitian manifolds IV

Theorem 1 (Frankel’s Theorem for circle actions on almost Hermitian manifolds)

If p ∈ M is a critical point of the Hamiltonian function f , and thus a fixed point
of the circle action, then

the eigenvalues of the Hessian Hessg f ∈ End(TpM) of f are given by the
weights of the circle action on TpM,

f is Morse–Bott at p in the sense that in a small enough open neighborhood
of p, the critical set Crit f := {q ∈ M : df (q) = 0} is a smooth submanifold
with tangent space Tp Crit f = Ker Hessg f (p), and

each connected component of Crit f has even dimension and even
codimension in M.

We prove Theorem 1 and further extensions in [12].
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Frankel’s Theorem for smooth almost Hermitian manifolds

Frankel’s Theorem for almost Hermitian manifolds V

Recall that we define the gradient vector field gradg f ∈ C∞(TM)
associated to any function f ∈ C∞(M,R) by the relation
g(gradg f ,Y ) := df (Y ), for all Y ∈ C∞(TM).

Consequently, the Hamiltonian function f in Theorem 1 obeys
g(gradg f ,Y ) = g(X , JY ) = −g(JX ,Y ), that is

gradg f = −JX .

If ∇g denotes the covariant derivative for the Levi–Civita connection on
TM defined by the Riemannian metric g , then one can define the Hessian
of f ∈ C∞(M,R) by

Hessg f := ∇g gradg f ∈ C∞(End(TM)).
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Frankel’s Theorem for smooth almost Hermitian manifolds

Frankel’s Theorem for almost Hermitian manifolds VI

For a critical point p ∈ M, Theorem 1 implies that subspace T−p M ⊂ TpM
on which the Hessian Hessg f (p) ∈ End(TpM) is negative definite is equal
to the subspace of TpM on which the circle acts with negative weight.

Hence, the Morse–Bott index of f at a critical point p, which by definition
is the dimension of the subspace T−p M, is equal to the dimension of the
subspace of TpM on which the circle acts with negative weight.
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Virtual Morse–Bott index on an analytic space

Virtual Morse–Bott index for the Hamiltonian function of
a circle action on an analytic space
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Virtual Morse–Bott index on an analytic space

Virtual Morse–Bott index for an analytic space I

As illustrated by well-known results due to Hitchin [33, Proposition 7.1
and Theorem 7.6] for the moduli space of Higgs bundles over a Riemann
surface, Theorem 1 is remarkably useful.

However, the hypotheses of Theorem 1 limit its applications to smooth
manifolds and, while its application in [33] has been generalized from
smooth manifolds to orbifolds (see Nasatyr and Steer [49]), those
extensions do not encompass the generality allowed by Goresky and
MacPherson [24] in their far-reaching development of Morse theory for
stratified spaces.

One of our goals in our article [12] is to indicate how Frankel’s Theorem 1
has useful generalizations to (real or complex) analytic spaces that are not
necessarily smooth.
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Virtual Morse–Bott index on an analytic space

Virtual Morse–Bott index for an analytic space II

Analytic spaces are locally defined as the zero loci of finitely many analytic
functions.

For the development of complex analytic spaces, we refer to Abhyankar
[1], Aroca, Hironaka, and Vicente [4] (based on the earlier three-volume
series by Aroca, Hironaka, and Vicente [32, 3, 2]), Fischer [20], Bierstone
and Milman [5, Section 2], Grauert and Remmert [26], Griffiths and Harris,
[27], or Narasimhan [48].

For the analogous development of real analytic spaces, we refer to
Hironaka [30, 31] and Guaraldo, Macr̀ı, and Tancredi [28].

We first have the simpler
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Virtual Morse–Bott index on an analytic space

Virtual Morse–Bott index for an analytic space III

Theorem 2 (Virtual Morse–Bott index of critical points of a real analytic function on a
real analytic space)

Let X be a finite-dimensional real analytic manifold, M ⊂ X be a real analytic subspace,
p ∈ M be a point, and F : U → Rn be a real analytic, local defining function for M on
an open neighborhood U of p in the sense that M ∩U = F−1(0) ∩U . Let
TpM = Ker dF (p) denote the Zariski tangent space to M at p. Let f : X → R be a real
analytic function and assume that p is a Morse–Bott critical point of the restriction
f : M → R in the sense that

C = {q ∈ M ∩U : Ker df (q) = TqM} is a real analytic submanifold of X , and

Ker df (p) = TpM and TpC = Ker Hess f (p).

Let Ker± dF (p) = T±
p M ⊂ TpM denote the maximal positive and negative real

subspaces for Hess f (p) ∈ EndR(TpM). If the virtual Morse–Bott index

λ−
p (f ) := dimR Ker

− dF (p)− dimR Coker dF (p), (2)

is positive, then p is not a local minimum for f : M → R.
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Virtual Morse–Bott index on an analytic space

Virtual Morse–Bott index for an analytic space IV

We next have the following generalization of Theorem 1, specialization of
Theorem 2, and sharpening of the definition of virtual Morse–Bott index.

Theorem 3 (Virtual Morse–Bott index of critical points of a Hamiltonian function for a
circle action on a complex analytic space)

Let X be a complex, finite-dimensional, Kähler manifold with circle action that is
compatible with the complex structure and induced Riemannian metric. Assume that the
circle action is Hamiltonian with real analytic Hamiltonian function f : X → R such that
df = ιξω, where ω is the Kähler form on X and ξ is the vector field on X generated by
the circle action. Let M ⊂ X be a complex analytic subspace, p ∈ M be a point, and
F : U → Cn be a complex analytic, circle equivariant, local defining function for M on
an open neighborhood U ⊂ X of p in the sense that M ∩U = F−1(0) ∩U . Let

H2
p ⊂ Cn denote the orthogonal complement of Ran dF (p) ⊂ Cn,

H1
p = Ker dF (p) ⊂ TpX denote the Zariski tangent space to M at p, and

Mvir ⊂ X denote the complex, Kähler submanifold given by F−1(H2
p) ∩U and

observe that TpM
vir = H1

p.
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Virtual Morse–Bott index on an analytic space

Virtual Morse–Bott index for an analytic space V
Theorem 3 (Virtual Morse–Bott index of critical points of a Hamiltonian function for a
circle action on a complex analytic space)

If p is a critical point of f : M → R in the sense that Ker df (p) = H1
p, then p is a fixed

point of the induced circle action on Mvir.

Let S ⊂ Mvir be the connected component containing p of the complex analytic
submanifold of Mvir given by the set of fixed points of the circle action on Mvir

and assume that S ⊂ M.

Let H1,−
p ⊂ H1

p and H2,−
p ⊂ H2

p denote the subspaces on which the circle acts with
negative weight.

If the virtual Morse–Bott index

λ−
p (f ) := dimR H

1,−
p − dimR H2,−

p (3)

is positive, then p is not a local minimum for f : M → R.
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Virtual Morse–Bott index on an analytic space

Virtual Morse–Bott index for an analytic space VI

Extensions and generalizations of Theorem 3

As we show in [12, 13], Theorem 3 generalizes to where X is a real
analytic, almost Hermitian manifold.

That statement and its proof are provided in [12, 13].

Theorem 3 suffices for applications to the moduli spaces considered in [12]
(including this talk) and whose top strata of smooth points are known to
be complex Kähler.
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ASD connections, Seiberg–Witten and SO(3) monopoles

Moduli spaces of anti-self-dual connections,
Seiberg–Witten monopoles, and SO(3) monopoles
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ASD connections, Seiberg–Witten and SO(3) monopoles

ASD connections, Seiberg–Witten & SO(3) monopoles I

Four-manifold topology

For a closed topological four-manifold X , we define

c1(X )2 := 2e(X ) + 3σ(X ) and χh(X ) :=
1

4
(e(X ) + σ(X )),

where e(X ) = 2− 2b1(X ) + b2(X ) and σ(X ) = b+(X )− b−(X ) are the
Euler characteristic and signature of X , respectively.

We call X standard if it is closed, connected, oriented, and smooth with
odd b+(X ) ≥ 3 and b1(X ) = 0.

If QX is the intersection form on H2(X ;Z), then b±(X ) are the dimensions
of the maximal positive and negative subspaces of QX on H2(X ;R).
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ASD connections, Seiberg–Witten and SO(3) monopoles

ASD connections, Seiberg–Witten & SO(3) monopoles II
Seiberg–Witten monopoles

For a standard 4-manifold X , its Seiberg–Witten invariants define a
function SWX : Spinc(X ) 3 s 7→ SWX (s) ∈ Z on the set of spinc

structures.

A spinc structure s = (ρ,W ) is a pair of rank-2 Hermitian vector bundles
W± over X with W = W+ ⊕W− and a Clifford multiplication map,
ρ : T ∗X → HomC(W+,W−).

The Seiberg–Witten moduli space Ms is the set of gauge-equivalence
classes of solutions to the Seiberg–Witten U(1)-monopole equations and is
an orientable, compact, finite-dimensional, smooth manifold [47, 50, 53].

A Seiberg–Witten invariant SWX (s) is defined by pairing a natural
cohomology class with [Ms] or counting points when Ms is
zero-dimensional.
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ASD connections, Seiberg–Witten and SO(3) monopoles

ASD connections, Seiberg–Witten & SO(3) monopoles III
One calls c1(s) := c1(W+) ∈ H2(X ;Z) a Seiberg–Witten basic class if
SWX (s) 6= 0.

The set of Seiberg–Witten basic classes, B(X ) := {c1(s) : SWX (s) 6= 0},
is finite.

One says that X has Seiberg–Witten simple type if K 2 = c1(X )2 for all
K ∈ B(X ).

All known standard 4-manifolds have simple type (see [41, Conjecture
1.6.2]).
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ASD connections, Seiberg–Witten and SO(3) monopoles

ASD connections, Seiberg–Witten & SO(3) monopoles IV
Anti-self-dual connections

For w ∈ H2(X ;Z) and 4κ ∈ Z, let E be a rank-2 Hermitian bundle over X
with c1(E ) = w and Pontrjagin number p1(su(E )) = −4κ, where
su(E ) ⊂ gl(E ) is the SO(3) subbundle of trace-zero, skew-Hermitian
endomorphisms of E .

Let BE be the quotient of the space of fixed-determinant, unitary
connections A on E by the group GE of determinant-one, unitary
automorphisms of E .

The moduli space of projectively anti-self-dual (ASD) connections on E is

Mw
κ (X ) = {[A] ∈ BE : (F+

A )0 = 0},

where F+
A is the self-dual component defined by a metric g on X of the

curvature FA of A and (F+
A )0 is the trace-free component of F+

A .
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ASD connections, Seiberg–Witten and SO(3) monopoles

ASD connections, Seiberg–Witten & SO(3) monopoles V
Then Mw

κ (X ) is an oriented smooth manifold [7] (for generic g) and
non-compact due to energy bubbling, but admits an Uhlenbeck
compactification M̄w

κ (X ) as a closed subspace of the compact space

IMw
κ (X ) :=

N⊔
`=0

(Mw
κ−`(X )× Sym`(X ))

of gauge-equivalence classes of ideal ASD connections [7, 60, 61].
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ASD connections, Seiberg–Witten and SO(3) monopoles

ASD connections, Seiberg–Witten & SO(3) monopoles VI
SO(3) monopoles

We briefly introduce the moduli subspace Mt ⊂ Ct of SO(3) monopoles,
where t = (ρ,W ,E ) is a spinu structure over X and Ct is the quotient by
GE of the space of pairs (A,Φ) of fixed-determinant, unitary connections A
on a Hermitian rank-2 vector bundle E and sections Φ of W+ ⊗ E .

We call (A,Φ) an SO(3) monopole if

(F+
A )0 − ρ−1(Φ⊗ Φ∗)00 = 0 and DAΦ = 0, (4)

where the section (Φ⊗ Φ∗)00 of su(W+)⊗ su(E ) is the trace-free
component of Φ⊗ Φ∗ of u(W+)⊗ u(E ) and DA is the Dirac operator and
ρ : ∧+(T ∗X )→ su(W+) is an isomorphism of SO(3) bundles.

We let C ∗,0t ⊂ Ct denote the Banach manifold of irreducible,
non-zero-section pairs.
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ASD connections, Seiberg–Witten and SO(3) monopoles

ASD connections, Seiberg–Witten & SO(3) monopoles VII
The space Mt is noncompact due to energy bubbling, but admits an
Uhlenbeck compactification M̄t as a closed subspace of the compact space

IMt :=
N⊔
`=0

(Mt` × Sym`(X ))

of ideal SO(3) monopoles [14], where t` := (ρ,W ,E`) has c1(E`) = c1(E )
and c2(E`) = c2(E )− `.
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ASD connections, Seiberg–Witten and SO(3) monopoles

ASD connections, Seiberg–Witten & SO(3) monopoles VIII
The circle action on sections Φ induces a circle action on M̄t with two
types of fixed points, represented by triples (A,Φ, x) such that

Φ ≡ 0 or

A is a reducible connection.

For points [A,Φ, x] ∈ M̄t, there are bijections between

subsets where Φ ≡ 0 and the moduli space M̄w
κ (X ) of ideal ASD

connections and

subsets where A is reducible with respect to splittings, E` = L1 ⊕ L2,
and Seiberg–Witten moduli spaces Ms defined by s = (ρ,W ⊗ L1).

For generic geometric perturbations, M ∗,0
t = Mt ∩ C ∗,0t is a

finite-dimensional smooth manifold [14, 10, 58].
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ASD connections, Seiberg–Witten and SO(3) monopoles

ASD connections, Seiberg–Witten & SO(3) monopoles IX

Figure 4.1: SO(3) monopole moduli space Mt with Seiberg–Witten moduli
subspaces Msi and moduli subspace Mw

κ (X , g) of anti-self-dual connections
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Virtual Morse–Bott theory and existence of ASD connections

Virtual Morse–Bott theory and existence of anti-self-dual
connections
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Virtual Morse–Bott theory and existence of ASD connections

Virtual Morse–Bott theory and ASD connections I

Recall [7] that the expected dimension of the moduli space Mw
κ (X , g) of

g -anti-self-dual connections on su(E ) is given by

dimMw
κ (X , g) = −2p1(su(E ))− 6χh(X ).

When g is generic in the sense of [7, 22], then Mw
κ (X , g) is an open,

smooth manifold if non-empty.

As κ increases relative to χh(X ), the expected dimension of Mw
κ (X , g)

increases and it becomes easier to prove that this moduli space is
non-empty.

Indeed, existence results due to Taubes [56, Theorems 1.1 and 1.2] or
Taylor [57, Theorem 1.1] imply that Mw

κ (X , g) is non-empty when κ is
sufficiently large relative to χh(X ).
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Virtual Morse–Bott theory and existence of ASD connections

Virtual Morse–Bott theory and ASD connections II

By contrast, as κ becomes smaller (equivalently, as p1(su(E )) becomes
larger), it becomes more difficult to prove that Mw

κ (X , g) is non-empty.

The geography question (see Gompf and Stipsicz [23]) asks which values
of signature and Euler characteristic can be realized by smooth
four-manifolds which have a given geometric structure, such as a

complex structure,

symplectic structure,

an Einstein metric,

have non-trivial Donaldson invariants,

have non-trivial Seiberg–Witten invariants.
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Virtual Morse–Bott theory and existence of ASD connections

Virtual Morse–Bott theory and ASD connections III

We now suppose the topology of E is constrained by a basic lower bound,

p1(su(E )) ≥ c1(X )2 − 12χh(X ), (5)

and ask whether existence of a spinc structure s over X with non-zero
Seiberg–Witten invariant SWX (s) implies that Mw

κ (X , g) is non-empty.

If su(E ) also admits an ASD connection and the metric g on X is generic,
then the moduli space Mw

κ (g) of ASD connections on su(E ) with
w = c1(E ) and κ = −1

4p1(su(E )) is non-empty, so

0 ≤ 1

2
dimMw

κ (g) = −p1(su(E ))− 3χh(X ) ≤ −c1(X )2 + 9χh(X ),

since Mw
κ (g) is a smooth manifold, and thus yielding the

Bogomolov–Miyaoka–Yau inequality (1).
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Virtual Morse–Bott theory and existence of ASD connections

Virtual Morse–Bott theory and ASD connections IV

Our approach to (1) hinges on proving existence of ASD connections on
su(E ) for generic Riemannian metrics g on X via our virtual Morse-Bott
theory.

This strategy uses our link pairing formulae [16] and the hypothesis in
Conjecture 1.1 that X admits a spinc structure s with non-zero
Seiberg–Witten invariant SWX (s).

Remarks

Of course if Mw
κ (X , g) has expected dimension 2δ and a Donaldson

invariant of degree δ is non-zero, that would imply that Mw
κ (X , g) is

non-empty and Witten’s Formula [19] expresses Donaldson invariants in
terms of Seiberg–Witten invariants and so this is one way in which
Seiberg–Witten invariants yield information about Mw

κ (X , g).
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Virtual Morse–Bott theory and existence of ASD connections

Virtual Morse–Bott theory and ASD connections V

However, this route via Witten’s Formula presumes that the expected
dimension of Mw

κ (X , g) is non-negative and moreover does not take into
account the phenomenon of superconformal simple type, where Donaldson
invariants of sufficiently low degree are zero even when Seiberg–Witten
invariants are not all zero [11, 18, 44, 45].

Our approach to proving that Mw
κ (X , g) is non-empty for standard

four-manifolds X of Seiberg–Witten simple type under the constraint (5)
relies on virtual Morse–Bott theory on the moduli space of SO(3)
monopoles.
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Virtual Morse–Bott theory on moduli space of SO(3) monopoles

Virtual Morse–Bott theory on the moduli space of SO(3)
monopoles over a closed, complex Kähler surface
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Virtual Morse–Bott theory on moduli space of SO(3) monopoles

Virtual Morse–Bott theory on moduli spaces I

Our strategy to use compactifications of the moduli space Mt of SO(3)
monopoles to prove existence of an anti-self-dual connection on su(E )
satisfying (5) is broadly modeled on that of Hitchin [33].

We first prove existence of a spinu structure t = (ρ,W ,E ) with p1(su(E ))
satisfying (5) and non-empty SO(3) monopole moduli space Mt.

We then show that for Kähler surfaces X , all critical points of Hitchin’s
function on Mt are given by

points in Mw
κ (X , g) ⊂Mt, or

points in moduli subspaces Ms ⊂Mt, defined by spinc structures
s = (ρ,W ), of Seiberg–Witten monopoles with positive virtual
Morse–Bott index.
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Virtual Morse–Bott theory on moduli space of SO(3) monopoles

Virtual Morse–Bott theory on moduli spaces II

Figure 6.2: SO(3) monopole moduli space Mt with Seiberg–Witten moduli
subspaces Msi and moduli subspace Mw

κ (X , g) of anti-self-dual connections
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Virtual Morse–Bott theory on moduli space of SO(3) monopoles

Virtual Morse–Bott theory on moduli spaces III
Unlike the case of Higgs pairs in [33], we must address two fundamental
new difficulties in our application that do not arise in [33]:

1 The strata Ms ⊂Mt of moduli subspaces of Seiberg–Witten
monopoles are smooth submanifolds but not necessarily smoothly
embedded as submanifolds of Mt; and

2 The moduli space Mt of SO(3) monopoles is non-compact due to
energy bubbling.

Hitchin [33] assumes that the degree of the Hermitian vector bundle E is
odd and that its rank is two.

More generally, it is known (see Fan [9] or Gothen [25] and references
therein) that if the degree and rank of the Hermitian vector bundle E in
the equations (5.1) for a Higgs pair are coprime, then the linearization of
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Virtual Morse–Bott theory on moduli space of SO(3) monopoles

Virtual Morse–Bott theory on moduli spaces IV
the equations (5.1) at a Higgs pair (A,Φ) has vanishing cokernel and
Higgs pairs (A,Φ) have trivial isotropy subgroups in AutE .

However, when the degree and rank of E are not coprime, one may
encounter problems similar to those in Item (1), where the linearization of
the SO(3) monopole equations at a Seiberg–Witten pair (A,Φ) may have
a non-vanishing cokernel.

The virtual Morse–Bott theory method that we introduce in [12] is
designed to address such difficulties:

We replace the classical Morse–Bott index [6] of a smoothly embedded
critical submanifold with the virtual Morse–Bott index of a smooth critical
manifold that need not be smoothly embedded as a submanifold.
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Virtual Morse–Bott theory on moduli space of SO(3) monopoles

Virtual Morse–Bott theory on moduli spaces V
Hitchin’s Morse function

We consider the following analogue of Hitchin’s Morse function [33],

f : IMt 3 [A,Φ, x] 7→ f [A,Φ, x] =
1

2
‖Φ‖2

L2(X ) ∈ R (6)

on the compact, smoothly stratified space of ideal SO(3) monopoles IMt

containing the Uhlenbeck compactification M̄t of Mt (see [14]).

The function f is continuous on IMt (see [14] or [17]) and smooth, but
not necessarily a Morse–Bott function on smooth strata of IMt.

We say that an interior point p = [A,Φ] ∈Mt is a critical point of f if
df (p) is zero on the Zariski tangent space TpMt; this definition can be
extended to points in the ideal boundary ∂Mt.
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Feasibility of the SO(3)-monopole cobordism method

The first step in our program is to construct a spinu structure
t = (ρ,W ,E ) with p1(su(E )) satisfying (5) and for which M ∗,0

t is
non-empty so that the gradient flow of (1.4) will have a starting point.

To obtain greater control over the characteristic classes of the

spinu structure, we work on the blow-up X̃ := X#CP2
of X .

Because c1(X̃ )2 = c1(X )2 − 1, we replace (5) with the condition that
p1 ≥ c1(X̃ ) + 1− 12χh(X̃ ). We then prove

45 / 73



Virtual Morse–Bott theory on moduli space of SO(3) monopoles

Virtual Morse–Bott theory on moduli spaces VII

Theorem 4 (Feasibility of spinu structures and positivity of virtual Morse–Bott
indices)

Let X be a standard four-manifold of Seiberg–Witten simple type, let

X̃ = X#CP2
denote the blow-up of X , and let s̃ be a spinc structure over X with

non-zero Seiberg–Witten invariant SWX̃ (s̃). Then there exists a spinu structure t̃

over X̃ such the following hold:

1 Ms̃ ⊂Mt̃;

2 The moduli space M ∗,0
t̃

is non-empty; and

3 p1(̃t) ≥ c1(X̃ )2 + 1− 12χh(X̃ ).

Moreover, for all non-empty Seiberg–Witten moduli subspaces Ms′ ⊂Mt̃, the
virtual Morse–Bott index of the Hitchin function f in (6) along Ms′ is positive.
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While we prove Theorem 6 in [12] for closed complex Kähler surfaces, we
see no obstacle to extending it to standard four-manifolds.

Indeed, the cohomology calculations used to prove Theorem 4 do not rely
on X being complex or Kähler and the corresponding elliptic deformation
complexes obtained when closed complex Kähler surfaces are replaced by
standard four-manifolds are perturbations by compact operators of the
elliptic deformation complexes obtained for closed complex Kähler surfaces.
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Critical points of Hitchin’s function in the moduli space of SO(3)
monopoles over closed complex Kähler surfaces

The next step in our program is to use Frankel’s Theorem (see Theorem 1)
to identify the critical points of Hitchin’s function on Mt.

In this talk, we shall restrict our discussion to SO(3) monopoles over
closed complex Kähler surfaces.

Suppose that (X , g , J) is a complex Kähler surface, with Kähler form
ω(·, ·) = g(·, J·).

A version of the Hitchin–Kobayashi bijection then identifies the moduli
space Mt of SO(3) monopoles with the moduli space of stable
holomorphic pairs (see Dowker [8], Lübke and Teleman [42, 43], and
Okonek and Teleman [51, 52]).
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Thus Mt is a complex analytic space and the open subspace M sm

t ⊂Mt

of smooth points is a complex manifold, generalizing results by Itoh
[34, 35] for the complex structure of the moduli space Mw

κ (X , g) of
anti-self-dual connections via its identification with the moduli space of
stable holomorphic bundles.

In [13], we extend the proofs by Itoh [36] and Kobayashi [38] of their
results for Mw

κ (X , g) to prove that the L2 metric g and integrable almost
complex structure J on M sm

t define a Kähler form ω = g(·, J·) on M sm
t .

When g (and other geometric perturbation parameters in the SO(3)
monopole equations) are generic, then M sm

t = M ∗,0
t but if g is Kähler

and thus non-generic, this equality need not hold.

We address this issue in [13] and outline them in [12].
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Circle actions, moment maps, Frankel’s Theorem, Morse–Bott property

As in the analysis [33, Sections 6 and 7] by Hitchin, the function f in (6)
is a moment map for the circle action on M sm

t , that is,

df = ιξω on M sm
t ,

where the vector field ξ on M sm
t is the generator of the S1 action on Mt

given by scalar multiplication on the sections Φ.

Because the fundamental 2-form ω is non-degenerate, [A,Φ] ∈Mt is a
critical point if and only if it is a fixed point of the S1 action.

From our previous work on SO(3) monopoles [14], we know that [A,Φ] is
a fixed point if and only if (A,Φ) is a reducible pair with Φ 6≡ 0
(equivalent to a Seiberg–Witten monopole) or Φ ≡ 0 (equivalent to a
projectively anti-self-dual connection).
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Indeed, as a consequence of Theorem 1 and our results in [14, 15] that
identify the fixed points of this S1 action, we have the

Theorem 5 (All critical points of Hitchin’s Hamiltonian function represent
either Seiberg–Witten monopoles or anti-self-dual connections)

Let [A,Φ] ∈Mt be a critical point of Hitchin’s function (6). If Φ 6≡ 0,
then there exists a spinc structure s over X such that [A,Φ] ∈ Ms ⊂Mt.
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Virtual Morse–Bott properties

If a Seiberg–Witten fixed point p = [A,Φ] is a smooth point of Mt then,
by arguments generalizing those of Hitchin [33, Section 7], one can apply
Frankel’s Theorem 1 to

prove that f is Morse–Bott at p and

compute the Morse index of f (the dimension of the maximal
negative definite subspace of Hess f (p) on TpMt) as the dimension of
the negative weight space T−p Mt for the S1 action on TpMt.
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The dimension of T−p Mt can be computed via the Atiyah–Singer Index
Theorem or the Hirzebruch–Riemann–Roch Index Theorem via the
identification of Mt with a moduli space of stable holomorphic pairs.

In [33, Proposition 7.1], Hitchin computes the Morse indices of the
reducible Higgs pair points; they are always positive, so these points
cannot be local minima.

If the Seiberg–Witten fixed point p = [A,Φ] is a singular point of Mt, as
is more typical, we use the fact that Ms ⊂Mt is a submanifold of a
smooth virtual moduli space M vir

t ⊂ Ct implied by the Kuranishi model
given by the elliptic deformation complex for the SO(3) monopole
equations with cohomology groups H•A,Φ.
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The space M vir
t is a complex Kähler manifold of dimension equal to that

of the Zariski tangent space TpMt and contains M sm
t and Ms as complex

Kähler submanifolds.

The set of fixed points of the S1 action on M vir
t coincides with Ms and f

is Morse–Bott on M vir
t with critical submanifold Ms.

(In the simpler setting of Hitchin [33, Section 7], the critical sets are
smooth submanifolds of the moduli space of Higgs pairs and f is
Morse–Bott.)

Here, Ms is a smooth manifold, given by a moduli space of Seiberg–Witten
monopoles that may be zero or positive-dimensional (in the latter case
SWX (s) = 0 when X has Seiberg–Witten simple type), but not
necessarily an embedded smooth submanifold of Mt.
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The elliptic deformation complex defining H•A,Φ splits into normal and
tangential elliptic deformation subcomplexes with cohomology groups
H•,tA,Φ and H•,nA,Φ, respectively.

The normal elliptic deformation complex defining H•,nA,Φ further splits into
positive and negative weight elliptic deformation subcomplexes with
cohomology groups H•,±A,Φ.

We define the virtual Morse–Bott index of f at p to be minus the
(Atiyah–Singer) index of the negative weight, normal subcomplex
defining H•,−A,Φ and compute these indices using the
Hirzebruch–Riemann–Roch Index Theorem to give
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Theorem 6 (Virtual Morse–Bott index of Hitchin’s Hamiltonian function at
a point represented by a Seiberg–Witten monopole)

Let X be a closed complex Kähler surface and [A,Φ] ∈ Ms ⊂Mt be a
Seiberg–Witten monopole in the SO(3) monopole moduli space Mt. Then
the virtual Morse–Bott index of Hitchin’s function f in (6) at the point
[A,Φ] is given by

λ[A,Φ](f ) = dimH1,n,−
A,Φ − dimH2,n,−

A,Φ dimH0,n,−
A,Φ

= −χh(X ) +
1

2
(c1(s)− c1(t)) · KX −

1

2
(c1(s)− c1(t))2 ,

(7)

where KX ∈ H2(X ;Z) denotes the canonical class of X , and
c1(s) := c1(W+) ∈ H2(X ;Z) for W = W+ ⊕W, and
c1(t) := c1(E ) ∈ H2(X ;Z).

56 / 73



Virtual Morse–Bott theory on moduli space of SO(3) monopoles

Virtual Morse–Bott theory on moduli spaces XVIII
We included H0

A,Φ above for completeness, but for SO(3) monopoles we

have H0
A,Φ = 0 unless Φ ≡ 0 and A is reducible (a case that can be

excluded by standard techniques for the moduli space of SO(3) monopoles.

For reasons explained in Remark 1.2, we expect the formula (7) for the
virtual Morse–Bott index in the conclusion of Theorem 6 to continue to
hold for standard four-manifolds.

Knowledge of the dimension dimMs of the critical submanifold Ms is not
required to compute the index of the normal elliptic deformation
subcomplexes.

If p is a smooth point, its virtual Morse–Bott index is equal to the
classical Morse–Bott index.
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One can use

the Embedded Resolution of Singularities Theorem for (real or
complex) analytic spaces (see Hironaka [29]), and

generic perturbation and transversality arguments

to prove that if the virtual Morse–Bott index of a singular critical point
p is positive, then p cannot be a local minium (see Theorem 3).
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Thank you for your attention!
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[43] Martin Lübke and Andrei Teleman, The universal Kobayashi-Hitchin
correspondence on Hermitian manifolds, Mem. Amer. Math. Soc. 183
(2006), no. 863. MR 2254074

[44] Marcos Mariño, Gregory W. Moore, and Grigor Peradze,
Four-manifold geography and superconformal symmetry, Math. Res.
Lett. 6 (1999), no. 3-4, 429–437, arXiv:math/9812042. MR 1713141

69 / 73



Bibliography

[45] , Superconformal invariance and the geography of
four-manifolds, Comm. Math. Phys. 205 (1999), no. 3, 691–735,
arXiv:hep-th/9812055. MR 1711332

[46] Y. Miyaoka, On the Chern numbers of surfaces of general type,
Invent. Math. 42 (1977), 225–237. MR 0460343

[47] John W. Morgan, The Seiberg–Witten equations and applications to
the topology of smooth four-manifolds, Mathematical Notes, vol. 44,
Princeton University Press, Princeton, NJ, 1996. MR 1367507

[48] R. Narasimhan, Introduction to the theory of analytic spaces, Lecture
Notes in Mathematics, No. 25, Springer–Verlag, Berlin-New York,
1966. MR 0217337

[49] Emile Ben Nasatyr and Brian Steer, Orbifold Riemann surfaces and
the Yang-Mills-Higgs equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(4) 22 (1995), no. 4, 595–643. MR 1375314

70 / 73



Bibliography

[50] Liviu I. Nicolaescu, Notes on Seiberg–Witten theory, Graduate
Studies in Mathematics, vol. 28, American Mathematical Society,
Providence, RI, 2000. MR 1787219 (2001k:57037)

[51] Christian Okonek and Andrei Teleman, The coupled Seiberg-Witten
equations, vortices, and moduli spaces of stable pairs, Internat. J.
Math. 6 (1995), no. 6, 893–910, arXiv:alg-geom/9505012. MR
1354000

[52] , Quaternionic monopoles, Comm. Math. Phys. 180 (1996),
no. 2, 363–388, arXiv:alg-geom/9505029. MR 1405956

[53] Dietmar A. Salamon, Spin geometry and Seiberg–Witten invariants,
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