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The Lie group G, and 3-forms in 7 dimensions

In 1886 Engel suggested to Killing a way to construct a 14-dimensional
simple Lie group using generic 3-forms in 7 variables; details not settled until
1907.

Given a complex k-form ¢ and a linear map A € GL(n,C), A*¢ is another
k-form. A k-form on C" is generic if its GL(n, C)-orbit is open in AK(C")*.

Given any k-form ¢ on C" define a Lie subgroup of GL(n,C) by
Gy :={A € GL(n,C): A*¢p = ¢}.

For a generic k-form ¢ we need dim GL(n, C) — dim G4 = dim AX(C™)*.

For k = 3, n =7 the dimension of Gy for a generic form must be
dim G4 = dim GL(7,C) — dim A3(C")* = 49 — 35 = 14

which is the dimension of G»!



Generic 3-forms in R’, G, and the octonions

In 1900 Engel showed:
® there is exactly one GL(7,C) orbit of generic 3-forms in C’
m For every generic 3-form ¢ the isotropy group G, is isomorphic to G(C).

In 1907 Reichel (Engel's student) considered generic real 3-forms in R7.
® There are 2 types of generic (real) 3-forms in R”.
O In one case there is an invariant symmetric bilinear form of signature (4, 3).

O In the other case there is an invariant symmetric bilinear form of signature
(7,0); the isotropy group of any such 3-form is isomorphic to the compact
real simple Lie group G, C SO(7).

We will call such a generic real 3-form ¢ positive and write ¢ € P3(R").

Define a vector cross-product on R” = Im(Q) using octonionic multiplication
ux v =Im(uv)

Cross-product has an associated 3-form o (u, v, w) := (u x v, w) = (uv, w).
Then ¢o € P3(R7) so Gy = Aut(0) = {A € GL(7,R)| A*po = ¢0}.



Positive 3-forms & G,-structures on 7-manifolds

For an oriented smooth 7-manifold M and p € M
Ppo(M) :={p € /\3T;M | o =¢ [t: T,M — R}

where ¢ is any orientation preserving isomorphism.

P(M) denotes the bundle over M with fibre P,(M).

A 3-form ¢ on M is positive if ¢ is a section of P(M), i.e. ¢, € Po(M) Vp.
Each positive 3-form on M defines a reduction of the frame bundle FM to a

principal subbundle of FM with fibre Gy, i.e. a Gy-structure on M that
induces the given orientation on M.

Positive 3-forms on M « (oriented) Gy-structures on M.



G, as a Riemannian holonomy group?

Possible holonomy groups of Riemannian manifolds! are extremely limited:

e 5 possible infinite families and

e 2 exceptional cases, the Lie groups G, and Spin; (in dims 7 and 8)
Both exceptional cases and 3 of the infinite families constitute the special
holonomy metrics.
Proving existence of metrics of special holonomy

took many years (1955-1997), and

involved many deep developments in geometry and geometric analysis:

® Yau's proof of the Calabi conjecture (1978) settled affirmatively the cases
with holonomy SU(n) and Sp(n). Yau used analytic methods to prove
existence of solutions to a complex Monge-Ampére equation — a fully
nonlinear scalar elliptic equation.

B For the two exceptional holonomy cases we can no longer reduce to a

scalar equation as in the SU(n) case. The best one can do involves
systems of nonlinear first-order PDEs. Many questions still remain open.

IBerger 1955: simply connected irreducible non-locally-symmetric case



Why special holonomy?

Special holonomy manifolds have special curvature properties:

m They are always Einstein metrics, Ric(g) = Ag. Except in one of the
infinite families, in fact A = 0, i.e. they are Ricci-flat metrics.

m Currently all known Ricci-flat metrics on simply-connected compact
manifolds have special holonomy!

m Special holonomy manifolds also support other interesting systems of
nonlinear first-order geometric PDEs : calibrated submanifolds and
instantons

m Ricci-flat spaces are an intrinsic geometry analogue of minimal surfaces
(soap films). Don't control the full Riemannian curvature Riem, only a
trace of it, the Ricci tensor;

m Exceptional holonomy spaces arise in M-theory as the simplest condition
to guarantee supersymmetric compactifications from 11 to 4 dimensions.
Here a characterisation in terms of parallel spinors is central.



1st-order PDE system for G, holonomy metrics

Important fact: The holonomy group Holg(M) determines the parallel
tensors on (M, g). In particular Holg(M) C G, C SO(7) implies

M" admits a g-parallel positive 3-form .
Converse: How to get a Gp-holonomy metric from a Gy-structure?
Theorem
Let (M, ¢, g,) be a Gy-structure; the following are equivalent

1. Hol(g,) € Gy and ¢ is the induced 3-form
2. dp = d*p =0, where d* is defined using Hodge star x w.r.t. g.

Call such a Gy-structure a torsion-free Gy structure.
2 is nonlinear in ¢ because metric g, depends nonlinearly on ¢ and *, d*
depends on g.

By writing equation for 3-form ¢ and allowing
Hol(g,) C G, we obtain differential equations.

2 is a Ist-order system of 49=(35+21-7) equations on the 35 coeffs of ¢!



Some exceptional holonomy milestones

1984: (Bryant) locally 3 many (incomplete) metrics with holonomy G, and
Spin(7). Proof uses Exterior Differential systems methods (designed for local
study of overdetermined PDE systems).

1989: (Bryant-Salamon) constructed a handful of explicit complete metrics
with holonomy G, and Spin(7) on noncompact manifolds. Metrics admit
large symmetry groups and are asymptotically conical.

1994: (Joyce) Elliptic PDE gluing methods used to construct compact
7-manifolds with holonomy G, and 8-manifolds with holonomy Spin;.

Idea: use elliptic PDE methods to perturb an initial closed positive 3-form ¢
with d*¢ small to a torsion-free one, i.e. dp = d*p = 0.

2000: Joyce's book Compact Manifolds with Special Holonomy.

2003: Kovalev uses Donaldson’s idea of a twisted connected sum
construction to find new gluing constructions of compact G, manifolds.
Until recently, still very few known complete noncompact G, manifolds:

Foscolo—H—Nordstrom constructed infinitely many diffeomorphism types
(to appear Duke Math Jnl 2021 and JEMS 2021).



The parabolic approach: flowing positive 3-forms

Naive Idea: Try to find a flow of positive 3-forms ¢; so that if o = ¢
where ¢ is an arbitrary positive 3-form on a 7-manifold M then ¢; — ¢ a
torsion-free Gp-structure as t — co. Much too naive!

e Any compact spin 7-manifold admits a positive 3-form, but a compact
7-manifold with Holg(M) = G, has |1 (M)] < co.

e 3 nontrivial constraints on p;(M) arising from Chern—Weil theory.

e can have long-time existence without convergence!

Possible ways forward:

® Add known necessary topological constraints (but no conjectures for
sufficient conditions)

m Constrain the initial 3-form ¢ further: most geometrically natural choice
is to impose dp; = 0, i.e. flow evolves through closed G;-structures.
(But we don’t know which compact spin 7-manifolds admit closed
Gy-structures. What about S77 Definitely doesn’t have a Gy-metric!)

® There is a natural flow on closed G,-structures that has a gradient flow
interpretation — Bryant’s Laplacian flow.



Bryant’s Laplacian flow

Solve
P e (LF)

dt
with initial condition g satisfying dgo = 0. (Then dy; = 0 for all t.)

m Stationary points of (LF) are exactly torsion-free Gy-structures.
m (LF) is the (upward) gradient flow for Hitchin's volume functional

1
vol(yp) := z /Map A *p

when restricted to cohomology class of .
® On a compact manifold vol(¢;) is increasing along (LF).
m Critical points of vol(y) in [¢] are maxima (strict modulo diffeos).

® Induced metric g; evolves under (LF) by

d

% = —2Ric(g:) + terms quadratic in torsion of ¢
Theorem (Bryant-Xu, Lotay-Wei)
(B-X) Short-time existence & uniqueness of solutions to (LF).
(L-W) Torsion-free Gy-structures are stable under (LF).



G, solitons: solitons in Bryant’s Laplacian flow

Gy-structure ¢, vector field X, A € R satisfying

dp = 0,
Ao = dp+ Lxo.
& self-similar solution of Laplacian flow

df

df 342t
dt o

3

or = k(t)*F*p, k(t) 72X, k(t)

A > 0: expanders (immortal solutions, i.e. exist up to t = +00)
A = 0: steady solitons (eternal solutions, i.e. exist for all time t € R)
A < 0: shrinkers (ancient solutions, i.e. exist backwards to t = —0o0)

m Non-steady soliton = ¢ exact
m Solitons on a compact manifold are stationary or expanders
® Scaling behaviour: (¢, X) is a A-soliton < (k3p, k=2X) is a k—2\-soliton.



Our motivation and overview of results

Motivation: in most geometric flows solitons provide the models for
singularity formation. So we look for (symmetric) solitons of Laplacian flow.

Goal: Find asymptotically conical (AC) G, solitons with cohomogeneity one:
SU(3)-invariant ones on A2 CP?; Sp(2)-invariant ones on A2 S*.
Theorem (A)

3 a 1-parameter family of steady solitons on N>, CP? asymptotic with rate —1
to torsion-free cone (deformations of the Bryant-Salamon AC Gy-manifold).

e AC steady solitons a new feature (compared to Ricci/Kahler-Ricci flow).
Theorem (B)

3 an explicit AC shrinker with rate —2 on /\3_84 and /\i(CPZ.

e Shrinkers are rare! Possible models for formation of conical singularities.
Theorem (C)

3 a I-parameter family of complete expanders on /\184 and on /\i(CP2.

Models for how Laplacian flow can smooth out certain conical singularities.



Closed invariant G,-structures on A2 M*\ M

For M = CP? or S*, A2 M has a cohomogeneity one action by G = SU(3)
or Sp(2). A2 M\ M is diffeomorphic to Ry x X, for ¥ = SU(3)/T? or CP3.

There are G-invariant forms wy,ws, w3 € Q3(X) and a € Q3(X) such that
any closed G-invariant Gy-structure on Ry x ¥ with H%H =1 can be
written as

()0:(7(12W1+f22(.4}2+f32W3)/\dt+ fhhfa, fi: Ry - Ry

with
d(fff3)
dt

For Sp(2)-invariance in addition require f, = f3.

=R+ 5+ (#)

Structure equations for w;, « the same in both cases =
A2S* case can be treated as a special case of A2 CP? case where f, = f3.



Closed invariant G, cones

Helpful to analyse invariant G,-structures on R, X X in terms of scale and
homothety class of invariant metrics on X

scale g := /fhfy = ¥/vol(X)
i h f
homethety class —1, —2, =3
g & §
@ closed and homothety class constant implies g linear and ¢ conical:

dg 1(f2 £ f
A <1 2+g32>:>f,-:c,-t

dt 6

with

6C1C2C3 = C12 + C22 + Cg. (*)
Note: any positive triple (c1, ¢z, ¢3) can be uniquely rescaled to satisfy (%)
~~ 2-parameter family of closed conical Gy-structures on R, x SU(3)/T2.

In other words, given homothety class on ¥, there is a unique choice of
“cone angle” that makes it a closed cone.



Evolution equations

On the face of it, the soliton condition for

9]
© = (fPwy + fPws + FFws) Adt + fifhfa, X = ums

is 2nd-order ODE system for (f1,f,f3,u) (with some constraints).

Can rewrite as a Ist-order system in 5 variables: the 3 f; and 2 variables
determining the torsion 2-form 7 of ¢.

Tendency: if%, %,% remain bounded as t — oo then asymptotic to closed

cone.

Rough strategy for finding AC solitonson A2M = M U Ryx¥.

1. Solutions on (0, €) x X that extend smoothly across M at t = 07?

2. Solutions for large t asymptotic to prescribed closed cone (c1, ¢z, ¢3)7
3. Do they fit together?

Picture for 1. is simplest.



Initial value problem near zero section of A\ M*

Understand solutions near zero section of /\il\/l a la Eschenburg-Wang.
¢ = (flwr + Fws + Fws) A dt + hbha

on R, x ¥ extends to smooth Gp-structure on /\2 M iff f; is odd with
f/(0) =1, and £, and f3 are even with m := £,(0 ) = f3(0) # 0.

Resulting singular initial value problem has formal power series solutions that
are convergent. (It is a regular singular point of 1st-order ODE system).
Proposition

For each A € R, there is

B 3 2-parameter family @m o of solutions defined for small t that extend
smoothly to a A-soliton on (nhd of zero section in) N2 CP?;

® ]-parameter subfamily ¢m = pmo also defines A-solitons on /\2+S4.
Two scale-invariant parameters: Am? and c.

So up to scale: 2-parameter families of local expanders/shrinkers on N2.CP?
a 1-parameter family of local steady solitons on A3 CP?



Expanders

Theorem (C)
For A > 0, each v, extends to a complete solution with f, = f3, and
fl'.

— —
t

for (¢1, ¢, &) a closed cone with ¢; < c,.

So this gives 1-parameter families of expanders on both /\2+S4 and /\i(CP2.
Strong Expectations

- These solitons are all AC, with rate —2

- 1-1 correspondence with closed cones such that ¢; < c:
any closed cone with ¢ = ¢3 on “one side” of the torsion-free cone
(%, %, %) is the AC end of a unique expander

Conjecture

For A > 0, an open subfamily of pm . (but not all) extend to complete
solutions, defining a 2-parameter family of AC solitons on N3 CP2.



Stability /rigidity of AC ends

Given A > 0 and any closed cone (¢, ¢, ¢3), we expect:

- 3 a 2-parameter family of AC ends asymptotic to the given cone.

- Difference between two solutions is of order exp(—2t2) * polynomial.
- If ¢ = c3, then a 1-parameter subfamily has f, = f;.

Flow lines of this 4=(2+2)-parameter family of solutions fill open subset of
5-dimensional phase space, so AC expander ends are stable.

For A\ < 0, for each closed cone (¢, ¢z, ¢3) there is a unique solution defined
for large t asymptotic to the given cone; so AC shrinker ends are rigid.

“Explanation” for shrinker/expander dichtomy: ODEs for expanders/
shrinkers asymptotic to given cone has an irregular singularity at t = 4o0.
For any A #£ 0, 3 a ! formal power series solution P in t~! determined by
the cone and a solution of the ODE system that is smooth in a nhd of

t = 400 whose Taylor series is P.

When A > 0 other smooth solutions also with Taylor series P at t = co exist
because of exponentially small corrections of form exp (—£At?) * poly(t).



Shrinkers: consequences of AC end rigidity

Heuristic for \ < 0:

Invariant shrinkers on R, x SU(3)/T? are flow lines in 5-dim phase space.
In 4-dimensional space of flow lines

® 2-dimensional submanifold extends across zero section CP? C A2 CP?
m 2-dimensional submanifold has AC behaviour

Expect transverse intersections ~ finitely many AC shrinkers on A2 CP?.
Similarly, restricting attention to solutions with f; = f3:

2-dimensional space of flow lines; 1-dim submanifold extends over special
orbit; 1-dim submanifold has AC behaviour.

Expect transverse intersections ~~ finitely many AC shrinkers on /\184.

In fact, can spot one explicit solution! (Theorem B) For A = —1
t 4t
_ 2 _f2_ 9 1.2 _
fl—t, f2—f3—z+zt7 U—g‘f’m

is an AC shrinker with rate —2 asymptotic to cone (1, %, %)

Conjecture: this is the | Spp-invariant AC shrinker on /\184.



Steady solitons

Significant qualitative differences from \ # 0:

Near special orbit, only a 1-parameter family of solutions up to scale.
Unique one with f, = f3: static soliton from Bryant-Salamon AC Gy-mfd.

Theorem
No non-stationary steady solitons on A3 S*.

Decoupling
®m For A =0, the flow can be separated into evolution of scale g and
evolution of 4 scale-normalised variables.

® Unique fixed point for the scale-normalised flow is the torsion-free cone;
It is a stable fixed point.

Theorem (A)

There exists a 1-parameter family (up to scale) of AC steady solitons on
N2.CP? all asymptotic to the torsion-free cone over SU(3)/T?; the family
includes steady solitons with arbitrarily small torsion.



Thanks for your attention!



Comparison with other flows: the steady case

e All known steady solitons in Ricci flow have sub-Euclidean volume growth:
o the Bryant soliton; Appleton’s resolutions of (some of) its quotients.

o Bryant soliton known to appear in a finite-time singularity of RF.

o known Kahler examples have at most half-dimensional volume growth
(Cao, Conlon—Deruelle). Not seen in finite-time singular behaviour of KRF.

e Our steady AC G, solitons most closely resemble Joyce-Lee-Tsui's (JLT)
translating solitons in Lagrangian mean curvature flow (LMCF).

o Joyce conjectures JLT translating solitons can appear in finite-time
singularities of LMCF if Floer homology is obstructed.

o Speculate that our steady G; solitons can also arise as finite-time
singularities of Laplacian flow on a compact 7-manifold.

(Our 2-parameter family of AC G, expanders on /\iCP2 resembles JLT's
family of exact Maslov-zero LMCF expanders asymptotic to pairs of
transverse Lagrangian 3-planes).



Comparison with other flows: shrinkers

Ricci flow: One obvious significant difference: absence of compact shrinkers
in G, flow; associated with positive curvature in RF, whereas scalar
curvature is non-positive for closed G,-structures.

General theory for noncompact complete shrinkers in RF is well-developed:

o their properties are a hybrid of those of positively curved Einstein manifolds
and spaces with non-negative Ricci, e.g. at most Euclidean volume growth.
o AC (gradient) shrinkers are extremely rigid—manifestation of parabolic
backwards uniqueness phenomenon, also seen in MCF.

o AC end behaviour of our (highly symmetric) G, shrinkers some indication
such strong rigidity also holds for AC G, (gradient?) shrinkers.

LMCEF: self-shrinkers exist and do occur but not in the Maslov-zero
(graded) setting. Q: Is there any natural condition to impose in the G,
setting that would rule out our AC shrinkers on A2 S* and A2 CP??

KRF: Feldman-limanen-Knopf (FIK) constructed symmetric ALE Kahler
shrinkers; simplest FIK shrinker does appear as a finite-time blowup of KRF
on 1-point blowup of CP? and is associated with blowing down the point.



