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The Lie group G2 and 3-forms in 7 dimensions

In 1886 Engel suggested to Killing a way to construct a 14-dimensional
simple Lie group using generic 3-forms in 7 variables; details not settled until
1907.

Given a complex k-form φ and a linear map A ∈ GL(n,C), A∗φ is another
k-form. A k-form on Cn is generic if its GL(n,C)-orbit is open in Λk(Cn)∗.

Given any k-form φ on Cn define a Lie subgroup of GL(n,C) by

Gφ := {A ∈ GL(n,C) : A∗φ = φ}.

For a generic k-form φ we need dimGL(n,C)− dimGφ = dim Λk(Cn)∗.

For k = 3, n = 7 the dimension of Gφ for a generic form must be

dimGφ = dimGL(7,C)− dim Λ3(C7)∗ = 49− 35 = 14

which is the dimension of G2!



Generic 3-forms in R7, G2 and the octonions

In 1900 Engel showed:

� there is exactly one GL(7,C) orbit of generic 3-forms in C7

� For every generic 3-form φ the isotropy group Gφ is isomorphic to G2(C).

In 1907 Reichel (Engel’s student) considered generic real 3-forms in R7.

� There are 2 types of generic (real) 3-forms in R7.
� In one case there is an invariant symmetric bilinear form of signature (4, 3).

� In the other case there is an invariant symmetric bilinear form of signature
(7, 0); the isotropy group of any such 3-form is isomorphic to the compact
real simple Lie group G2 ⊂ SO(7).

We will call such a generic real 3-form ϕ positive and write ϕ ∈ P3(R7).

Define a vector cross-product on R7 = Im(O) using octonionic multiplication

u × v = Im(uv)

Cross-product has an associated 3-form ϕ0(u, v ,w) := 〈u × v ,w〉 = 〈uv ,w〉.
Then ϕ0 ∈ P3(R7) so G2 = Aut(O) = {A ∈ GL(7,R)| A∗ϕ0 = ϕ0}.



Positive 3-forms & G2-structures on 7-manifolds

For an oriented smooth 7-manifold M and p ∈ M

Pp(M) := {ϕ ∈ Λ3T ∗pM | ι∗ϕ0 = ϕ |ι : TpM → R7}

where ι is any orientation preserving isomorphism.

P(M) denotes the bundle over M with fibre Pp(M).

A 3-form ϕ on M is positive if ϕ is a section of P(M), i.e. ϕp ∈ Pp(M) ∀p.

Each positive 3-form on M defines a reduction of the frame bundle FM to a
principal subbundle of FM with fibre G2, i.e. a G2-structure on M that
induces the given orientation on M.

Positive 3-forms on M! (oriented) G2-structures on M.



G2 as a Riemannian holonomy group?
Possible holonomy groups of Riemannian manifolds1 are extremely limited:

• 5 possible infinite families and
• 2 exceptional cases, the Lie groups G2 and Spin7 (in dims 7 and 8)

Both exceptional cases and 3 of the infinite families constitute the special
holonomy metrics. (The other 2 are generic Riemannian/Kähler metrics).

Proving existence of metrics of special holonomy (locally; complete metrics
on noncompact and on compact spaces) took many years (1955–1997), and
involved many deep developments in geometry and geometric analysis:

� Yau’s proof of the Calabi conjecture (1978) settled affirmatively the cases
with holonomy SU(n) and Sp(n). Yau used analytic methods to prove
existence of solutions to a complex Monge-Ampère equation – a fully
nonlinear scalar elliptic equation.

� For the two exceptional holonomy cases we can no longer reduce to a
scalar equation as in the SU(n) case. The best one can do involves
systems of nonlinear first-order PDEs. Many questions still remain open.

1Berger 1955: simply connected irreducible non-locally-symmetric case



Why special holonomy?

Special holonomy manifolds have special curvature properties:

� They are always Einstein metrics, Ric(g) = λg . Except in one of the
infinite families, in fact λ = 0, i.e. they are Ricci-flat metrics.

� Currently all known Ricci-flat metrics on simply-connected compact
manifolds have special holonomy!

� Special holonomy manifolds also support other interesting systems of
nonlinear first-order geometric PDEs : calibrated submanifolds and
instantons (special submanifolds and connections respectively).

� Ricci-flat spaces are an intrinsic geometry analogue of minimal surfaces
(soap films). Don’t control the full Riemannian curvature Riem, only a
trace of it, the Ricci tensor; for minimal surfaces control only mean
curvature H, not the full second fundamental form II of an immersion.

� Exceptional holonomy spaces arise in M-theory as the simplest condition
to guarantee supersymmetric compactifications from 11 to 4 dimensions.
Here a characterisation in terms of parallel spinors is central.



1st-order PDE system for G2 holonomy metrics

Important fact: The holonomy group Holg (M) determines the parallel
tensors on (M, g). In particular Holg (M) ⊆ G2 ⊂ SO(7) implies

M7 admits a g -parallel positive 3-form ϕ.

Converse: How to get a G2-holonomy metric from a G2-structure?

Theorem
Let (M, ϕ, gϕ) be a G2-structure; the following are equivalent

1. Hol(gϕ) ⊆ G2 and ϕ is the induced 3-form
2. dϕ = d∗ϕ = 0, where d∗ is defined using Hodge star ∗ w.r.t. gϕ.

Call such a G2-structure a torsion-free G2 structure.

2 is nonlinear in ϕ because metric gϕ depends nonlinearly on ϕ and ∗, d∗
depends on gϕ.

By writing equation for 3-form ϕ (not metric g directly) and allowing
Hol(gϕ) ⊆ G2 we obtain differential (not integro-differential) equations.

2 is a 1st-order system of 49=(35+21-7) equations on the 35 coeffs of ϕ!



Some exceptional holonomy milestones

1984: (Bryant) locally ∃ many (incomplete) metrics with holonomy G2 and
Spin(7). Proof uses Exterior Differential systems methods (designed for local
study of overdetermined PDE systems).

1989: (Bryant-Salamon) constructed a handful of explicit complete metrics
with holonomy G2 and Spin(7) on noncompact manifolds. Metrics admit
large symmetry groups and are asymptotically conical.

1994: (Joyce) Elliptic PDE gluing methods used to construct compact
7-manifolds with holonomy G2 and 8-manifolds with holonomy Spin7.

Idea: use elliptic PDE methods to perturb an initial closed positive 3-form ϕ
with d∗ϕ small to a torsion-free one, i.e. dϕ = d∗ϕ = 0.

2000: Joyce’s book Compact Manifolds with Special Holonomy.

2003: Kovalev uses Donaldson’s idea of a twisted connected sum
construction to find new gluing constructions of compact G2 manifolds.
Until recently, still very few known complete noncompact G2 manifolds:

Foscolo–H–Nordström constructed infinitely many diffeomorphism types
(to appear Duke Math Jnl 2021 and JEMS 2021).



The parabolic approach: flowing positive 3-forms

Naive Idea: Try to find a flow of positive 3-forms ϕt so that if ϕ0 = ϕ
where ϕ is an arbitrary positive 3-form on a 7-manifold M then ϕt → ϕ∞ a
torsion-free G2-structure as t →∞. Much too naive!

• Any compact spin 7-manifold admits a positive 3-form, but a compact
7-manifold with Holg (M) = G2 has |π1(M)| <∞.

• ∃ nontrivial constraints on p1(M) arising from Chern–Weil theory.

• can have long-time existence without convergence!

Possible ways forward:

� Add known necessary topological constraints (but no conjectures for
sufficient conditions)

� Constrain the initial 3-form ϕ further: most geometrically natural choice
is to impose dϕt = 0, i.e. flow evolves through closed G2-structures.
(But we don’t know which compact spin 7-manifolds admit closed
G2-structures. What about S7? Definitely doesn’t have a G2-metric!)

� There is a natural flow on closed G2-structures that has a gradient flow
interpretation – Bryant’s Laplacian flow.



Bryant’s Laplacian flow

Solve dϕt

dt
= ∆ϕtϕt (LF)

with initial condition ϕ0 satisfying dϕ0 = 0. (Then dϕt = 0 for all t.)

� Stationary points of (LF) are exactly torsion-free G2-structures.
� (LF) is the (upward) gradient flow for Hitchin’s volume functional

vol(ϕ) :=
1

7

∫
M

ϕ ∧ ∗ϕ

when restricted to cohomology class of ϕ0.
� On a compact manifold vol(ϕt) is increasing along (LF).
� Critical points of vol(ϕ) in [ϕ] are maxima (strict modulo diffeos).
� Induced metric gt evolves under (LF) by

dgt
dt

= −2Ric(gt) + terms quadratic in torsion of ϕt

Theorem (Bryant-Xu, Lotay-Wei)

(B-X) Short-time existence & uniqueness of solutions to (LF).
(L-W) Torsion-free G2-structures are stable under (LF).



G2 solitons: solitons in Bryant’s Laplacian flow

G2-structure ϕ, vector field X , λ ∈ R satisfying{
dϕ = 0,

∆ϕϕ = λϕ+ LXϕ.

⇔ self-similar solution of Laplacian flow

ϕt = k(t)3f ∗ϕ,
df

dt
= k(t)−2X , k(t) =

3 + 2λt

3

λ > 0: expanders (immortal solutions, i.e. exist up to t = +∞)
λ = 0: steady solitons (eternal solutions, i.e. exist for all time t ∈ R)
λ < 0: shrinkers (ancient solutions, i.e. exist backwards to t = −∞)

� Non-steady soliton ⇒ ϕ exact

� Solitons on a compact manifold are stationary or expanders

� Scaling behaviour: (ϕ,X ) is a λ-soliton⇔ (k3ϕ, k−2X ) is a k−2λ-soliton.



Our motivation and overview of results

Motivation: in most geometric flows solitons provide the models for
singularity formation. So we look for (symmetric) solitons of Laplacian flow.

Goal: Find asymptotically conical (AC) G2 solitons with cohomogeneity one:
SU(3)-invariant ones on Λ2

+CP2; Sp(2)-invariant ones on Λ2
+S4.

Theorem (A)

∃ a 1-parameter family of steady solitons on Λ2
+CP2 asymptotic with rate −1

to torsion-free cone (deformations of the Bryant-Salamon AC G2-manifold).

• AC steady solitons a new feature (compared to Ricci/Kähler-Ricci flow).

Theorem (B)

∃ an explicit AC shrinker with rate −2 on Λ2
+S4 and Λ2

+CP2.

• Shrinkers are rare! Possible models for formation of conical singularities.

Theorem (C)

∃ a 1-parameter family of complete expanders on Λ2
+S4 and on Λ2

+CP2.

Models for how Laplacian flow can smooth out certain conical singularities.



Closed invariant G2-structures on Λ2
+M

4 \M
For M = CP2 or S4, Λ2

+M has a cohomogeneity one action by G = SU(3)
or Sp(2). Λ2

+M \M is diffeomorphic to R+ ×Σ, for Σ = SU(3)/T 2 or CP3.

There are G -invariant forms ω1, ω2, ω3 ∈ Ω2(Σ) and α ∈ Ω3(Σ) such that
any closed G -invariant G2-structure on R+ × Σ with ‖ ∂∂t ‖ = 1 can be
written as

ϕ = (f 21 ω1 + f 22 ω2 + f 23 ω3) ∧ dt + f1f2f3α, fi : R+ → R+

with
d(f1f2f3)

dt
= 1

2 (f 21 + f 22 + f 23 ). (#)

For Sp(2)-invariance in addition require f2 = f3.

Structure equations for ωi , α the same in both cases ⇒
Λ2
+S4 case can be treated as a special case of Λ2

+CP2 case where f2 = f3.



Closed invariant G2 cones

Helpful to analyse invariant G2-structures on R+ × Σ in terms of scale and
homothety class of invariant metrics on Σ:

scale g := 3
√

f1f2f3 = 6
√
vol(Σ)

homethety class
f1
g
,
f2
g
,
f3
g

ϕ closed and homothety class constant implies g linear and ϕ conical:

dϕ = 0 ⇒ dg

dt
=

1

6

(
f 21
g2

+
f 22
g2

+
f 23
g2

)
⇒ fi = ci t

with
6c1c2c3 = c21 + c22 + c23 . (∗)

Note: any positive triple (c1, c2, c3) can be uniquely rescaled to satisfy (∗)
 2-parameter family of closed conical G2-structures on R+ × SU(3)/T 2.

In other words, given homothety class on Σ, there is a unique choice of
“cone angle” that makes it a closed cone.



Evolution equations

On the face of it, the soliton condition for

ϕ = (f 21 ω1 + f 22 ω2 + f 23 ω3) ∧ dt + f1f2f3α, X = u
∂

∂t

is 2nd-order ODE system for (f1,f2,f3,u) (with some constraints).

Can rewrite as a 1st-order system in 5 variables: the 3 fi and 2 variables
determining the torsion 2-form τ of ϕ.

Tendency: if f1
g ,

f2
g ,

f3
g remain bounded as t →∞ then asymptotic to closed

cone.

Rough strategy for finding AC solitons on Λ2
+M = M t R+×Σ.

1. Solutions on (0, ε)× Σ that extend smoothly across M at t = 0?

2. Solutions for large t asymptotic to prescribed closed cone (c1, c2, c3)?

3. Do they fit together?

Picture for 1. is simplest.



Initial value problem near zero section of Λ2
+M

4

Understand solutions near zero section of Λ2
+M à la Eschenburg-Wang.

ϕ = (f 21 ω1 + f 22 ω2 + f 23 ω3) ∧ dt + f1f2f3α

on R+ × Σ extends to smooth G2-structure on Λ2
+M iff f1 is odd with

f ′1 (0) = 1, and f2 and f3 are even with m := f2(0) = f3(0) 6= 0.

Resulting singular initial value problem has formal power series solutions that
are convergent. (It is a regular singular point of 1st-order ODE system).

Proposition

For each λ ∈ R, there is

� a 2-parameter family ϕm,c of solutions defined for small t that extend
smoothly to a λ-soliton on (nhd of zero section in) Λ2

+CP2;

� 1-parameter subfamily ϕm = ϕm,0 also defines λ-solitons on Λ2
+S4.

Two scale-invariant parameters: λm2 and c .

So up to scale: 2-parameter families of local expanders/shrinkers on Λ2
+CP2

a 1-parameter family of local steady solitons on Λ2
+CP2



Expanders

Theorem (C)

For λ > 0, each ϕm extends to a complete solution with f2 = f3, and

fi
t
→ ci

for (c1, c2, c2) a closed cone with c1 ≤ c2.

So this gives 1-parameter families of expanders on both Λ2
+S4 and Λ2

+CP2.

Strong Expectations

- These solitons are all AC, with rate −2

- 1-1 correspondence with closed cones such that c1 < c2:
any closed cone with c2 = c3 on “one side” of the torsion-free cone
( 1
2 ,

1
2 ,

1
2 ) is the AC end of a unique expander

Conjecture

For λ > 0, an open subfamily of ϕm,c (but not all) extend to complete
solutions, defining a 2-parameter family of AC solitons on Λ2

+CP2.



Stability/rigidity of AC ends

Given λ > 0 and any closed cone (c1, c2, c3), we expect:

- ∃ a 2-parameter family of AC ends asymptotic to the given cone.

- Difference between two solutions is of order exp(−λ6 t
2) ∗ polynomial.

- If c2 = c3, then a 1-parameter subfamily has f2 = f3.

Flow lines of this 4=(2+2)-parameter family of solutions fill open subset of
5-dimensional phase space, so AC expander ends are stable.

For λ < 0, for each closed cone (c1, c2, c3) there is a unique solution defined
for large t asymptotic to the given cone; so AC shrinker ends are rigid.

“Explanation” for shrinker/expander dichtomy: ODEs for expanders/
shrinkers asymptotic to given cone has an irregular singularity at t = +∞.

For any λ 6= 0, ∃ a ! formal power series solution P in t−1 determined by
the cone and a solution of the ODE system that is smooth in a nhd of
t = +∞ whose Taylor series is P.

When λ > 0 other smooth solutions also with Taylor series P at t =∞ exist
because of exponentially small corrections of form exp (− 1

6λt
2) ∗ poly(t).



Shrinkers: consequences of AC end rigidity

Heuristic for λ < 0:

Invariant shrinkers on R+ × SU(3)/T 2 are flow lines in 5-dim phase space.
In 4-dimensional space of flow lines

� 2-dimensional submanifold extends across zero section CP2 ⊂ Λ2
+CP2

� 2-dimensional submanifold has AC behaviour

Expect transverse intersections  finitely many AC shrinkers on Λ2
+CP2.

Similarly, restricting attention to solutions with f2 = f3:

2-dimensional space of flow lines; 1-dim submanifold extends over special
orbit; 1-dim submanifold has AC behaviour.

Expect transverse intersections  finitely many AC shrinkers on Λ2
+S4.

In fact, can spot one explicit solution! (Theorem B) For λ = −1

f1 = t, f 22 = f 23 = 9
4 + 1

4 t
2, u =

t

3
+

4t

9 + t2

is an AC shrinker with rate −2 asymptotic to cone (1, 12 ,
1
2 ).

Conjecture: this is the ! Sp2-invariant AC shrinker on Λ2
+S4.



Steady solitons

Significant qualitative differences from λ 6= 0:

Near special orbit, only a 1-parameter family of solutions up to scale.
Unique one with f2 = f3: static soliton from Bryant-Salamon AC G2-mfd.

Theorem
No non-stationary steady solitons on Λ2

+S4.

Decoupling

� For λ = 0, the flow can be separated into evolution of scale g and
evolution of 4 scale-normalised variables.

� Unique fixed point for the scale-normalised flow is the torsion-free cone;
It is a stable fixed point.

Theorem (A)

There exists a 1-parameter family (up to scale) of AC steady solitons on
Λ2
+CP2 all asymptotic to the torsion-free cone over SU(3)/T 2; the family

includes steady solitons with arbitrarily small torsion.



Thanks for your attention!



Comparison with other flows: the steady case

• All known steady solitons in Ricci flow have sub-Euclidean volume growth:
◦ the Bryant soliton; Appleton’s resolutions of (some of) its quotients.
◦ Bryant soliton known to appear in a finite-time singularity of RF.

◦ known Kähler examples have at most half-dimensional volume growth
(Cao, Conlon–Deruelle). Not seen in finite-time singular behaviour of KRF.

• Our steady AC G2 solitons most closely resemble Joyce-Lee-Tsui’s (JLT)
translating solitons in Lagrangian mean curvature flow (LMCF).

◦ Joyce conjectures JLT translating solitons can appear in finite-time
singularities of LMCF if Floer homology is obstructed.
◦ Speculate that our steady G2 solitons can also arise as finite-time
singularities of Laplacian flow on a compact 7-manifold.

(Our 2-parameter family of AC G2 expanders on Λ2
+CP2 resembles JLT’s

family of exact Maslov-zero LMCF expanders asymptotic to pairs of
transverse Lagrangian 3-planes).



Comparison with other flows: shrinkers

Ricci flow: One obvious significant difference: absence of compact shrinkers
in G2 flow; associated with positive curvature in RF, whereas scalar
curvature is non-positive for closed G2-structures.

General theory for noncompact complete shrinkers in RF is well-developed:

◦ their properties are a hybrid of those of positively curved Einstein manifolds
and spaces with non-negative Ricci, e.g. at most Euclidean volume growth.

◦ AC (gradient) shrinkers are extremely rigid–manifestation of parabolic
backwards uniqueness phenomenon, also seen in MCF.

◦ AC end behaviour of our (highly symmetric) G2 shrinkers some indication
such strong rigidity also holds for AC G2 (gradient?) shrinkers.

LMCF: self-shrinkers exist and do occur but not in the Maslov-zero
(graded) setting. Q: Is there any natural condition to impose in the G2

setting that would rule out our AC shrinkers on Λ2
+S4 and Λ2

+CP2?

KRF: Feldman-Ilmanen-Knopf (FIK) constructed symmetric ALE Kähler
shrinkers; simplest FIK shrinker does appear as a finite-time blowup of KRF
on 1-point blowup of CP2 and is associated with blowing down the point.


