Solitons in Bryant's G₂-Laplacian flow.

Mark Haskins Duke University

16 February 2021 University of York

Joint work in progress with Rowan Juneman & Johannes Nordström (Bath)

The Lie group G₂ and 3-forms in 7 dimensions

In 1886 Engel suggested to Killing a way to construct a 14-dimensional simple Lie group using *generic* 3-*forms in* 7 *variables*; details not settled until 1907.

Given a complex k-form ϕ and a linear map $A \in GL(n, \mathbb{C})$, $A^*\phi$ is another k-form. A k-form on \mathbb{C}^n is **generic** if its $GL(n, \mathbb{C})$ -orbit is *open* in $\Lambda^k(\mathbb{C}^n)^*$. Given any k-form ϕ on \mathbb{C}^n define a Lie subgroup of $GL(n, \mathbb{C})$ by

$$G_{\phi} := \{A \in GL(n, \mathbb{C}) : A^* \phi = \phi\}.$$

For a generic k-form ϕ we need dim $GL(n, \mathbb{C}) - \dim G_{\phi} = \dim \Lambda^{k}(\mathbb{C}^{n})^{*}$. For k = 3, n = 7 the dimension of G_{ϕ} for a generic form must be

$$\dim G_{\phi} = \dim GL(7,\mathbb{C}) - \dim \Lambda^3(\mathbb{C}^7)^* = 49 - 35 = 14$$

which is the dimension of G_2 !

Generic 3-forms in \mathbb{R}^7 , G_2 and the octonions

In 1900 Engel showed:

- there is exactly one $GL(7,\mathbb{C})$ orbit of generic 3-forms in \mathbb{C}^7
- For every generic 3-form ϕ the isotropy group G_{ϕ} is isomorphic to $G_2(\mathbb{C})$.

In 1907 Reichel (Engel's student) considered generic real 3-forms in \mathbb{R}^7 .

- There are 2 types of generic (real) 3-forms in \mathbb{R}^7 .
 - \Box In one case there is an invariant symmetric bilinear form of signature (4,3).
 - □ In the other case there is an invariant symmetric bilinear form of signature (7, 0); the isotropy group of any such 3-form is isomorphic to the compact real simple Lie group $G_2 \subset SO(7)$.

We will call such a generic real 3-form φ positive and write $\varphi \in \mathcal{P}^3(\mathbb{R}^7)$.

Define a vector cross-product on $\mathbb{R}^7 = \mathrm{Im}(\mathbb{O})$ using octonionic multiplication

$$u \times v = \operatorname{Im}(uv)$$

Cross-product has an associated 3-form $\varphi_0(u, v, w) := \langle u \times v, w \rangle = \langle uv, w \rangle$. Then $\varphi_0 \in \mathcal{P}^3(\mathbb{R}^7)$ so $G_2 = Aut(\mathbb{O}) = \{A \in GL(7, \mathbb{R}) | A^*\varphi_0 = \varphi_0\}.$

Positive 3-forms & *G*₂**-structures on 7-manifolds**

For an oriented smooth 7-manifold M and $p \in M$

$$\mathcal{P}_{\rho}(M) := \{ \varphi \in \Lambda^3 T^*_{\rho} M \, | \, \iota^* \varphi_0 = \varphi \, | \iota : \, T_{\rho} M \to \mathbb{R}^7 \}$$

where $\boldsymbol{\iota}$ is any orientation preserving isomorphism.

 $\mathcal{P}(M)$ denotes the bundle over M with fibre $\mathcal{P}_{p}(M)$.

A 3-form φ on M is *positive* if φ is a section of $\mathcal{P}(M)$, i.e. $\varphi_p \in \mathcal{P}_p(M) \forall p$. Each positive 3-form on M defines a reduction of the frame bundle $\mathcal{F}M$ to a principal subbundle of $\mathcal{F}M$ with fibre G_2 , i.e. a G_2 -structure on M that induces the given orientation on M.

Positive 3-forms on $M \iff$ (oriented) G_2 -structures on M.

G₂ as a Riemannian holonomy group?

Possible holonomy groups of Riemannian manifolds¹ are extremely limited:

- 5 possible infinite families and
- 2 exceptional cases, the Lie groups G_2 and $Spin_7$ (in dims 7 and 8)

Both exceptional cases and 3 of the infinite families constitute the special holonomy metrics. (The other 2 are generic Riemannian/Kähler metrics).

Proving existence of metrics of special holonomy (locally; complete metrics on noncompact and on compact spaces) took many years (1955–1997), and involved many deep developments in geometry and geometric analysis:

- Yau's proof of the Calabi conjecture (1978) settled affirmatively the cases with holonomy SU(n) and Sp(n). Yau used analytic methods to prove existence of solutions to a complex Monge-Ampère equation – a fully nonlinear scalar elliptic equation.
- For the two exceptional holonomy cases we can no longer reduce to a scalar equation as in the SU(n) case. The best one can do involves systems of nonlinear first-order PDEs. Many questions still remain open.

¹Berger 1955: simply connected irreducible non-locally-symmetric case

Why special holonomy?

Special holonomy manifolds have special curvature properties:

- They are always Einstein metrics, *Ric(g) = λg*. Except in one of the infinite families, in fact *λ* = 0, i.e. they are Ricci-flat metrics.
- Currently all known Ricci-flat metrics on simply-connected compact manifolds have special holonomy!
- Special holonomy manifolds also support other interesting systems of nonlinear first-order geometric PDEs : calibrated submanifolds and instantons (special submanifolds and connections respectively).
- Ricci-flat spaces are an *intrinsic* geometry analogue of minimal surfaces (soap films). Don't control the full Riemannian curvature *Riem*, only a trace of it, the Ricci tensor; for minimal surfaces control only mean curvature *H*, not the full second fundamental form *II* of an immersion.
- Exceptional holonomy spaces arise in M-theory as the simplest condition to guarantee *supersymmetric* compactifications from 11 to 4 dimensions. Here a characterisation in terms of *parallel spinors* is central.

1st-order PDE system for G₂ holonomy metrics

Important fact: The holonomy group $Hol_g(M)$ determines the parallel tensors on (M, g). In particular $Hol_g(M) \subseteq G_2 \subset SO(7)$ implies

 M^7 admits a g-parallel positive 3-form φ .

Converse: How to get a G_2 -holonomy metric from a G_2 -structure?

Theorem

Let $(M, \varphi, g_{\varphi})$ be a G_2 -structure; the following are equivalent

1. $\operatorname{Hol}(g_{\varphi}) \subseteq G_2$ and φ is the induced 3-form **2.** $d\varphi = d^*\varphi = 0$, where d^* is defined using Hodge star * w.r.t. g_{φ} .

Call such a G_2 -structure a torsion-free G_2 structure.

2 is *nonlinear* in φ because metric g_{φ} depends nonlinearly on φ and *, d^* depends on g_{φ} .

By writing equation for 3-form φ (not metric g directly) and allowing $Hol(g_{\varphi}) \subseteq G_2$ we obtain *differential* (not integro-differential) equations.

2 is a 1st-order system of 49=(35+21-7) equations on the 35 coeffs of φ !

Some exceptional holonomy milestones

1984: (**Bryant**) locally \exists many (incomplete) metrics with holonomy G_2 and Spin(7). Proof uses Exterior Differential systems methods (designed for local study of overdetermined PDE systems).

1989: (**Bryant-Salamon**) constructed a handful of explicit complete metrics with holonomy G_2 and Spin(7) on noncompact manifolds. Metrics admit large symmetry groups and are asymptotically conical.

1994: (**Joyce**) Elliptic PDE gluing methods used to construct compact 7-manifolds with holonomy G_2 and 8-manifolds with holonomy $Spin_7$. **Idea:** use elliptic PDE methods to perturb an initial closed positive 3-form φ

with $d^*\varphi$ small to a torsion-free one, i.e. $d\varphi = d^*\varphi = 0$.

2000: Joyce's book Compact Manifolds with Special Holonomy.

2003: **Kovalev** uses **Donaldson's** idea of a twisted connected sum construction to find new gluing constructions of compact G_2 manifolds. Until recently, still very few known complete noncompact G_2 manifolds:

Foscolo–H–Nordström constructed infinitely many diffeomorphism types (to appear **Duke Math Jnl 2021** and **JEMS 2021**).

The parabolic approach: flowing positive 3-forms

Naive Idea: Try to find a flow of positive 3-forms φ_t so that if $\varphi_0 = \varphi$ where φ is an arbitrary positive 3-form on a 7-manifold M then $\varphi_t \to \varphi_\infty$ a torsion-free G_2 -structure as $t \to \infty$. Much too naive!

- Any compact spin 7-manifold admits a positive 3-form, but a compact 7-manifold with $Hol_g(M) = G_2$ has $|\pi_1(M)| < \infty$.
- \exists nontrivial constraints on $p_1(M)$ arising from Chern–Weil theory.
- can have long-time existence without convergence!

Possible ways forward:

- Add known necessary topological constraints (but no conjectures for sufficient conditions)
- Constrain the initial 3-form φ further: most geometrically natural choice is to impose dφ_t = 0, i.e. flow evolves through closed G₂-structures. (But we don't know which compact spin 7-manifolds admit closed G₂-structures. What about S⁷? Definitely doesn't have a G₂-metric!)
- There is a natural flow on closed G₂-structures that has a gradient flow interpretation Bryant's Laplacian flow.

Bryant's Laplacian flow

Solve

$$\frac{d\varphi_t}{dt} = \Delta_{\varphi_t}\varphi_t \tag{LF}$$

with initial condition φ_0 satisfying $d\varphi_0 = 0$. (Then $d\varphi_t = 0$ for all t.)

- Stationary points of (LF) are exactly torsion-free G₂-structures.
- (LF) is the (upward) gradient flow for Hitchin's volume functional

$$\operatorname{vol}(\varphi) := rac{1}{7} \int_M \varphi \wedge * \varphi$$

when restricted to cohomology class of φ_0 .

- On a compact manifold $vol(\varphi_t)$ is increasing along (LF).
- Critical points of vol(φ) in [φ] are maxima (strict modulo diffeos).
- Induced metric g_t evolves under (LF) by

$$\frac{dg_t}{dt} = -2\text{Ric}(g_t) + \text{ terms quadratic in torsion of } \varphi_t$$

Theorem (Bryant-Xu, Lotay-Wei)

(B-X) Short-time existence & uniqueness of solutions to (LF). (L-W) Torsion-free G_2 -structures are stable under (LF).

G₂ solitons: solitons in Bryant's Laplacian flow

 $\mathit{G}_2 ext{-structure}\ arphi$, vector field X, $\lambda\in\mathbb{R}$ satisfying

$$egin{cases} darphi &= 0, \ \Delta_arphi arphi &= \lambda arphi + \mathcal{L}_X arphi \end{cases}$$

 \Leftrightarrow self-similar solution of Laplacian flow

$$\varphi_t = k(t)^3 f^* \varphi, \qquad \frac{df}{dt} = k(t)^{-2} X, \qquad k(t) = \frac{3+2\lambda t}{3}$$

 $\lambda > 0$: expanders (immortal solutions, i.e. exist up to $t = +\infty$) $\lambda = 0$: steady solitons (eternal solutions, i.e. exist for all time $t \in \mathbb{R}$) $\lambda < 0$: shrinkers (ancient solutions, i.e. exist backwards to $t = -\infty$)

- Non-steady soliton $\Rightarrow \varphi$ exact
- Solitons on a *compact* manifold are stationary or expanders
- Scaling behaviour: (φ, X) is a λ -soliton $\Leftrightarrow (k^3\varphi, k^{-2}X)$ is a $k^{-2}\lambda$ -soliton.

Our motivation and overview of results

Motivation: in most geometric flows solitons provide the models for singularity formation. So we look for (symmetric) solitons of Laplacian flow.

Goal: Find asymptotically conical (AC) G_2 solitons with cohomogeneity one: SU(3)-invariant ones on $\Lambda^2_+ \mathbb{C}P^2$; Sp(2)-invariant ones on $\Lambda^2_+ \mathbb{S}^4$.

Theorem (A)

 \exists a 1-parameter family of steady solitons on $\Lambda^2_+ \mathbb{C}P^2$ asymptotic with rate -1 to torsion-free cone (deformations of the Bryant-Salamon AC G₂-manifold).

• AC steady solitons a new feature (compared to Ricci/Kähler-Ricci flow).

Theorem (B)

- \exists an explicit AC shrinker with rate -2 on $\Lambda^2_+\mathbb{S}^4$ and $\Lambda^2_+\mathbb{C}P^2.$
- Shrinkers are rare! Possible models for formation of conical singularities.

Theorem (C)

 \exists a 1-parameter family of complete expanders on $\Lambda^2_+ \mathbb{S}^4$ and on $\Lambda^2_+ \mathbb{C}P^2$. Models for how Laplacian flow can smooth out certain conical singularities.

Closed invariant G_2 -structures on $\Lambda^2_+ M^4 \setminus M$

For $M = \mathbb{C}P^2$ or \mathbb{S}^4 , Λ^2_+M has a cohomogeneity one action by G = SU(3)or Sp(2). $\Lambda^2_+M \setminus M$ is diffeomorphic to $\mathbb{R}_+ \times \Sigma$, for $\Sigma = SU(3)/T^2$ or $\mathbb{C}P^3$.

There are *G*-invariant forms $\omega_1, \omega_2, \omega_3 \in \Omega^2(\Sigma)$ and $\alpha \in \Omega^3(\Sigma)$ such that any closed *G*-invariant *G*₂-structure on $\mathbb{R}_+ \times \Sigma$ with $\|\frac{\partial}{\partial t}\| = 1$ can be written as

$$\varphi = (f_1^2\omega_1 + f_2^2\omega_2 + f_3^2\omega_3) \wedge dt + f_1f_2f_3\alpha, \qquad f_i : \mathbb{R}_+ \to \mathbb{R}_+$$

with

$$\frac{d(f_1f_2f_3)}{dt} = \frac{1}{2}(f_1^2 + f_2^2 + f_3^2). \tag{\#}$$

For Sp(2)-invariance in addition require $f_2 = f_3$.

Structure equations for ω_i , α the same in both cases \Rightarrow $\Lambda^2_+ \mathbb{S}^4$ case can be treated as a special case of $\Lambda^2_+ \mathbb{C}P^2$ case where $f_2 = f_3$.

Closed invariant G₂ cones

Helpful to analyse invariant G_2 -structures on $\mathbb{R}_+ \times \Sigma$ in terms of scale and homothety class of invariant metrics on Σ :

scale
$$g := \sqrt[3]{f_1 f_2 f_3} = \sqrt[6]{\operatorname{vol}(\Sigma)}$$

homethety class $\frac{f_1}{g}, \frac{f_2}{g}, \frac{f_3}{g}$

 φ closed and homothety class constant implies g linear and φ conical:

1

$$d\varphi = 0 \Rightarrow \frac{dg}{dt} = \frac{1}{6} \left(\frac{f_1^2}{g^2} + \frac{f_2^2}{g^2} + \frac{f_3^2}{g^2} \right) \Rightarrow f_i = c_i t$$

with

$$\delta c_1 c_2 c_3 = c_1^2 + c_2^2 + c_3^2.$$
 (*)

Note: any positive triple (c_1, c_2, c_3) can be uniquely rescaled to satisfy (*) \rightsquigarrow 2-parameter family of closed conical G_2 -structures on $\mathbb{R}_+ \times SU(3)/T^2$. In other words, given homothety class on Σ , there is a unique choice of "cone angle" that makes it a closed cone.

Evolution equations

On the face of it, the soliton condition for

$$\varphi = (f_1^2 \omega_1 + f_2^2 \omega_2 + f_3^2 \omega_3) \wedge dt + f_1 f_2 f_3 \alpha, \qquad X = u \frac{\partial}{\partial t}$$

is 2nd-order ODE system for (f_1, f_2, f_3, u) (with some constraints).

Can rewrite as a 1st-order system in 5 variables: the 3 f_i and 2 variables determining the torsion 2-form τ of φ .

Tendency: if $\frac{f_1}{g}, \frac{f_2}{g}, \frac{f_3}{g}$ remain bounded as $t \to \infty$ then asymptotic to closed cone.

Rough strategy for finding AC solitons on $\Lambda^2_+ M = M \sqcup \mathbb{R}_+ \times \Sigma$.

- 1. Solutions on $(0, \epsilon) \times \Sigma$ that extend smoothly across M at t = 0?
- **2.** Solutions for large t asymptotic to prescribed closed cone (c_1, c_2, c_3) ?
- 3. Do they fit together?

Picture for 1. is simplest.

Initial value problem near zero section of $\Lambda^2_+ M^4$

Understand solutions near zero section of $\Lambda^2_+ M$ à la Eschenburg-Wang.

$$\varphi = (f_1^2\omega_1 + f_2^2\omega_2 + f_3^2\omega_3) \wedge dt + f_1f_2f_3\alpha$$

on $\mathbb{R}_+ \times \Sigma$ extends to smooth G_2 -structure on $\Lambda^2_+ M$ iff f_1 is odd with $f'_1(0) = 1$, and f_2 and f_3 are even with $m := f_2(0) = f_3(0) \neq 0$.

Resulting singular initial value problem has formal power series solutions that are convergent. (It is a **regular singular point** of 1st-order ODE system).

Proposition

For each $\lambda \in \mathbb{R}$, there is

- a 2-parameter family φ_{m,c} of solutions defined for small t that extend smoothly to a λ-soliton on (nhd of zero section in) Λ²₊CP²;
- 1-parameter subfamily $\varphi_m = \varphi_{m,0}$ also defines λ -solitons on $\Lambda^2_+ \mathbb{S}^4$.

Two scale-invariant parameters: λm^2 and c.

So up to scale: 2-parameter families of local expanders/shrinkers on $\Lambda^2_+ \mathbb{C}P^2$ a 1-parameter family of local steady solitons on $\Lambda^2_+ \mathbb{C}P^2$

Expanders

Theorem (C)

For $\lambda > 0$, each φ_m extends to a complete solution with $f_2 = f_3$, and

$$rac{f_i}{t}
ightarrow c_i$$

for (c_1, c_2, c_2) a closed cone with $c_1 \leq c_2$.

So this gives 1-parameter families of expanders on both $\Lambda^2_+\mathbb{S}^4$ and $\Lambda^2_+\mathbb{C}P^2.$ Strong Expectations

- These solitons are all AC, with rate -2
- 1-1 correspondence with closed cones such that $c_1 < c_2$: any closed cone with $c_2 = c_3$ on "one side" of the torsion-free cone $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ is the AC end of a unique expander

Conjecture

For $\lambda > 0$, an open subfamily of $\varphi_{m,c}$ (but not all) extend to complete solutions, defining a 2-parameter family of AC solitons on $\Lambda^2_+ \mathbb{C}P^2$.

Stability/rigidity of AC ends

Given $\lambda > 0$ and any closed cone (c_1, c_2, c_3) , we expect:

- \exists a 2-parameter family of AC ends asymptotic to the given cone.
- Difference between two solutions is of order $\exp(-\frac{\lambda}{6}t^2)$ * polynomial.
- If $c_2 = c_3$, then a 1-parameter subfamily has $f_2 = f_3$.

Flow lines of this 4=(2+2)-parameter family of solutions fill open subset of 5-dimensional phase space, so AC expander ends are **stable**.

For $\lambda < 0$, for each closed cone (c_1, c_2, c_3) there is a **unique** solution defined for large *t* asymptotic to the given cone; so AC shrinker ends are rigid.

"Explanation" for shrinker/expander dichtomy: ODEs for expanders/ shrinkers asymptotic to given cone has an irregular singularity at $t = +\infty$. For any $\lambda \neq 0$, \exists a ! formal power series solution \mathcal{P} in t^{-1} determined by the cone and a solution of the ODE system that is smooth in a nhd of $t = +\infty$ whose Taylor series is \mathcal{P} .

When $\lambda > 0$ other smooth solutions also with Taylor series \mathcal{P} at $t = \infty$ exist because of exponentially small corrections of form $\exp\left(-\frac{1}{6}\lambda t^2\right) * poly(t)$.

Shrinkers: consequences of AC end rigidity

Heuristic for $\lambda < 0$:

Invariant shrinkers on $\mathbb{R}_+ \times SU(3)/T^2$ are flow lines in 5-dim phase space. In 4-dimensional space of flow lines

- 2-dimensional submanifold extends across zero section $\mathbb{C}P^2 \subset \Lambda^2_+ \mathbb{C}P^2$
- 2-dimensional submanifold has AC behaviour

Expect transverse intersections \rightsquigarrow *finitely* many AC shrinkers on $\Lambda^2_+ \mathbb{C}P^2$.

Similarly, restricting attention to solutions with $f_2 = f_3$:

2-dimensional space of flow lines; 1-dim submanifold extends over special orbit; 1-dim submanifold has AC behaviour.

Expect transverse intersections \rightsquigarrow *finitely* many AC shrinkers on $\Lambda^2_+ \mathbb{S}^4$. In fact, can spot one explicit solution! (Theorem B) For $\lambda = -1$

$$f_1 = t$$
, $f_2^2 = f_3^2 = \frac{9}{4} + \frac{1}{4}t^2$, $u = \frac{t}{3} + \frac{4t}{9+t^2}$

is an AC shrinker with rate -2 asymptotic to cone $(1, \frac{1}{2}, \frac{1}{2})$. **Conjecture:** this is the ! *Sp*₂-invariant AC shrinker on $\Lambda^2_+ \mathbb{S}^4$.

Steady solitons

Significant qualitative differences from $\lambda \neq 0$:

Near special orbit, only a 1-parameter family of solutions up to scale. Unique one with $f_2 = f_3$: static soliton from Bryant-Salamon AC G_2 -mfd.

Theorem

No non-stationary steady solitons on $\Lambda^2_+ \mathbb{S}^4$.

Decoupling

- For $\lambda = 0$, the flow can be separated into evolution of *scale* g and evolution of 4 scale-normalised variables.
- Unique fixed point for the scale-normalised flow is the torsion-free cone; It is a *stable* fixed point.

Theorem (A)

There exists a 1-parameter family (up to scale) of AC steady solitons on $\Lambda^2_+ \mathbb{C}P^2$ all asymptotic to the torsion-free cone over $SU(3)/T^2$; the family includes steady solitons with arbitrarily small torsion.

Thanks for your attention!

Comparison with other flows: the steady case

All known steady solitons in Ricci flow have sub-Euclidean volume growth:
the Bryant soliton; Appleton's resolutions of (some of) its quotients.
Bryant soliton known to appear in a finite-time singularity of RF.
known Kähler examples have at most half-dimensional volume growth (Cao, Conlon-Deruelle). Not seen in finite-time singular behaviour of KRF.

• Our steady AC G₂ solitons most closely resemble Joyce-Lee-Tsui's (JLT) *translating solitons* in Lagrangian mean curvature flow (LMCF).

 \circ Joyce conjectures JLT translating solitons can appear in finite-time singularities of LMCF if Floer homology is obstructed.

 \circ Speculate that our steady G_2 solitons can also arise as finite-time singularities of Laplacian flow on a compact 7-manifold.

(Our 2-parameter family of AC G_2 expanders on $\Lambda^2_+ \mathbb{C}P^2$ resembles JLT's family of exact Maslov-zero LMCF expanders asymptotic to pairs of transverse Lagrangian 3-planes).

Comparison with other flows: shrinkers

Ricci flow: One obvious significant difference: absence of *compact* shrinkers in G_2 flow; associated with positive curvature in RF, whereas scalar curvature is non-positive for closed G_2 -structures.

General theory for *noncompact complete shrinkers* in RF is well-developed: • their properties are a hybrid of those of positively curved Einstein manifolds and spaces with non-negative Ricci, e.g. at most Euclidean volume growth. • AC (gradient) shrinkers are extremely rigid-manifestation of parabolic backwards uniqueness phenomenon, also seen in MCF.

 \circ AC end behaviour of our (highly symmetric) G_2 shrinkers some indication such strong rigidity also holds for AC G_2 (gradient?) shrinkers.

LMCF: self-shrinkers exist and do occur but *not* in the Maslov-zero (graded) setting. **Q:** Is there any natural condition to impose in the G_2 setting that would rule out our AC shrinkers on $\Lambda^2_+ \mathbb{S}^4$ and $\Lambda^2_+ \mathbb{C}P^2$?

KRF: Feldman-Ilmanen-Knopf (FIK) constructed symmetric ALE Kähler shrinkers; simplest FIK shrinker does appear as a finite-time blowup of KRF on 1-point blowup of $\mathbb{C}P^2$ and is associated with blowing down the point.