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ABSTRACT. The main result of this paper is a construction of solutions to the reverse Yang-Mills-Higgs flow
converging in the C∞ topology to a critical point. The construction uses only the complex gauge group action,
which leads to an algebraic classification of the isomorphism classes of points in the unstable set of a critical
point in terms of a filtration of the underlying Higgs bundle.

Analysing the compatibility of this filtration with the Harder-Narasimhan-Seshadri double filtration gives
an algebraic criterion for two critical points to be connected by a flow line. As an application, we can use this
to construct Hecke modifications of Higgs bundles via the Yang-Mills-Higgs flow. When the Higgs field is zero
(corresponding to the Yang-Mills flow), this criterion has a geometric interpretation in terms of secant varieties
of the projectivisation of the underlying bundle inside the unstable manifold of a critical point, which gives a
precise description of broken and unbroken flow lines connecting two critical points. For non-zero Higgs field,
at generic critical points the analogous interpretation involves the secant varieties of the spectral curve of the
Higgs bundle.

1. INTRODUCTION

There is a well-known relationship between the Yang-Mills heat flow on a Riemann surface and the notion
of stability from algebraic geometry. This began with work of Atiyah and Bott [1] and continued with
Donaldson’s proof [7] of the Narasimhan-Seshadri theorem [39] and subsequent work of Daskalopoulos
[5] and Rade [41], which shows that the Yang-Mills flow converges to a unique critical point which is
isomorphic to the graded object of the Harder-Narasimhan-Seshadri double filtration of the initial condition.
In the setting of Higgs bundles, a theorem of Hitchin [15] and Simpson [45] shows that a polystable Higgs
bundle is gauge equivalent to the minimum of the Yang-Mills-Higgs functional and that this minimum is
achieved by the heat flow on the space of metrics. The results of [51] show that the theorem of Daskalopoulos
and Rade described above extends to the Yang-Mills-Higgs flow on the space of Higgs bundles over a
compact Riemann surface. More generally, when the base manifold is compact and Kähler, then these
results are due to [8], [9], [49], [45], [6], [43], [22] and [32].

Continuing on from these results, it is natural to investigate flow lines between critical points. Naito,
Kozono and Maeda [34] proved the existence of an unstable manifold of a critical point for the Yang-Mills
functional, however their method does not give information about the isomorphism classes in the unstable
manifold, and their proof requires a manifold structure on the space of connections (which is not true for
the space of Higgs bundles). Recent results of Swoboda [48] and Janner-Swoboda [23] count flow lines
for a perturbed Yang-Mills functional, however these perturbations destroy the algebraic structure of the
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Yang-Mills flow, and so there does not yet exist an algebro-geometric description of the flow lines in the
spirit of the results described in the previous paragraph. Moreover, one would also like to study flow lines
for the Yang-Mills-Higgs functional, in which case the perturbations do not necessarily preserve the space
of Higgs bundles, which is singular.

The purpose of this paper is to show that in fact there is an algebro-geometric description of the flow lines
connecting given critical points of the Yang-Mills-Higgs functional over a compact Riemann surface. As
an application, we show that the Hecke correspondence for Higgs bundles studied by Witten in [52] has a
natural interpretation in terms of gradient flow lines. Moreover, for the Yang-Mills flow, at a generic critical
point there is a natural embedding of the projectivisation of the underlying bundle inside the unstable set of
the critical point, and the results of this paper show that the isomorphism class of the limit of the downwards
flow is determined if the initial condition lies in one of the secant varieties of this embedding, giving us a
geometric criterion to distinguish between broken and unbroken flow lines. For the Yang-Mills-Higgs flow
the analogous picture involves the secant varieties of the space of Hecke modifications compatible with the
Higgs field. At generic critical points of the Yang-Mills-Higgs functional this space of Hecke modifications
is the spectral curve of the Higgs bundle.

The basic setup for the paper is as follows. Let E → X be a smooth complex vector bundle over a
compact Riemann surface with a fixed Hermitian metric and let B denote the space of Higgs pairs on E.
The Yang-Mills-Higgs functional is

YMH(∂̄A, ϕ) := ∥FA + [ϕ, ϕ∗]∥2L2

and the Yang-Mills-Higgs flow is the downwards gradient flow of YMH given by the equation (2.4). This
flow is generated by the action of the complex gauge group GC. Equivalently, one can fix a Higgs pair and
allow the Hermitian metric on the bundle to vary in which case the flow becomes a nonlinear heat equation
on the space of Hermitian metrics (cf. [8], [45]). At a critical point for this flow the Higgs bundle splits into
Higgs subbundles and on each subbundle the Higgs structure minimises YMH. The unstable set of a critical
point (∂̄A, ϕ) consists of all Higgs pairs for which a solution to the YMH flow (2.4) exists for all negative
time and converges in the smooth topology to (∂̄A, ϕ) as t → −∞. The first theorem of the paper gives an
algebraic criterion for a complex gauge orbit to intersect the unstable set for the Yang-Mills-Higgs flow.

Theorem 1.1 (Criterion for convergence of reverse heat flow). Let E be a complex vector bundle over a
compact Riemann surface X , and let (∂̄A, ϕ) be a Higgs bundle on E. Suppose that E admits a filtration
(E(1), ϕ(1)) ⊂ · · · ⊂ (E(n), ϕ(n)) = (E, ϕ) by Higgs subbundles such that the quotients (Qk, ϕk) :=

(E(k), ϕ(k))/(E(k−1), ϕ(k−1)) are Higgs polystable and slope(Qk) < slope(Qj) for all k < j. Then there
exists g ∈ GC and a solution to the reverse Yang-Mills-Higgs heat flow equation with initial condition
g · (∂̄A, ϕ) which converges to a critical point isomorphic to (Q1, ϕ1)⊕ · · · ⊕ (Qn, ϕn).

Conversely, if there exists a solution of the reverse heat flow from the initial condition (∂̄A, ϕ) converging
to a critical point (Q1, ϕ1)⊕· · ·⊕ (Qn, ϕn) where each (Qj , ϕj) is polystable with slope(Qk) < slope(Qj)

for all k < j, then (E, ϕ) admits a filtration (E(1), ϕ(1)) ⊂ · · · ⊂ (E(n), ϕ(n)) = (E, ϕ) whose graded
object is isomorphic to (Q1, ϕ1)⊕ · · · ⊕ (Qn, ϕn).
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A key difficulty in the construction is the fact that the space of Higgs bundles is singular, and so the
existing techniques for constructing unstable sets (see for example [34] for the Yang-Mills flow or [24, Sec.
6] in finite dimensions) cannot be directly applied since they depend on the manifold structure of the ambient
space. One possibility is to study the unstable set of the function ∥FA+ [ϕ, ϕ∗]∥2L2 + ∥∂̄Aϕ∥2L2 on the space
of all pairs (∂̄A, ϕ) without the Higgs bundle condition ∂̄Aϕ = 0, however one would then need a criterion to
determine when a point in this unstable set is a Higgs bundle and one would also need a method to determine
the isomorphism classes of these points.

The construction in the proof of Theorem 1.1 is intrinsic to the singular space since it uses the action of
the complex gauge group to map the unstable set for the linearised YMH flow (for which we can explicitly
describe the isomorphism classes) to the unstable set for the Yang-Mills-Higgs flow. The method used here
to compare the flow with its linearisation is called the “scattering construction” in [19] and [40] since it
originates in the study of wave operators in quantum mechanics (see [42] for an overview). The method in
this paper differs from [19] and [40] in that (a) the construction here is done using the gauge group action
in order to preserve the singular space and (b) the distance-decreasing formula for the flow on the space of
metrics [8] is used here in order to avoid constructing explicit local coordinates as in [19] (the construction
of [19] requires a manifold structure around the critical points).

As a consequence of Theorem 1.1, we have an algebraic criterion for critical points to be connected by
flow lines.

Corollary 1.2 (Algebraic classification of flow lines). Let xu = (∂̄Au , ϕu) and xℓ = (∂̄Aℓ
, ϕℓ) be critical

points with YMH(xu) > YMH(xℓ). Then xu and xℓ are connected by a flow line if and only if there
exists a Higgs pair (E, ϕ) which has Harder-Narasimhan-Seshadri double filtration whose graded object is
isomorphic to xℓ, and which also admits a filtration (E(1), ϕ(1)) ⊂ · · · ⊂ (E(n), ϕ(n)) = (E, ϕ) by Higgs
subbundles such that the quotients (Qk, ϕk) := (E(k), ϕ(k))/(E(k−1)ϕ(k−1)) are polystable and satisfy
slope(Qk) < slope(Qj) for all k < j and the graded object (Q1, ϕ1)⊕ · · ·⊕ (Qn, ϕn) is isomorphic to xu.

As an application of the previous theorem, we can construct Hecke modifications of Higgs bundles via
Yang-Mills-Higgs flow lines. First consider the case of a Hecke modification at a single point (miniscule
Hecke modifications in the terminology of [52]).

Theorem 1.3. (1) Let 0 → (E′, ϕ′) → (E, ϕ)
v→ Cp → 0 be a Hecke modification such that (E, ϕ)

is stable and (E′, ϕ′) is semistable, and let Lu be a line bundle with degLu + 1 < slope(E′) <

slope(E). Then there exist sections ϕu, ϕℓ ∈ H0(K), a line bundle Lℓ with degLℓ = degLu + 1

and a metric on E ⊕ Lu such that xu = (E, ϕ) ⊕ (Lu, ϕu) and xℓ = (E′
gr, ϕ

′
gr) ⊕ (Lℓ, ϕℓ) are

critical points connected by a YMH flow line, where (E′
gr, ϕ

′
gr) is isomorphic to the graded object

of the Seshadri filtration of (E′, ϕ′).
(2) Let xu = (E, ϕ) ⊕ (Lu, ϕu) and xℓ = (E′, ϕ′) ⊕ (Lℓ, ϕℓ) be critical points connected by a YMH

flow line such that Lu, Lℓ are line bundles with degLℓ = degLu + 1, (E, ϕ) is stable and (E′, ϕ′)

is polystable with degLu + 1 < slope(E′) < slope(E). Then (E′, ϕ′) is the graded object of the
Seshadri filtration of a Hecke modification of (E, ϕ). If (E′, ϕ′) is Higgs stable then it is a Hecke
modification of (E, ϕ).
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For Hecke modifications defined at multiple points, we can inductively apply the above theorem to obtain
a criterion for two critical points to be connected by a broken flow line. For non-negative integers m,n,
the definition of (m,n) stability is given in Definition 4.5. The space Nϕ,ϕu denotes the space of Hecke
modifications compatible with the Higgs fields ϕ and ϕu (see Definition 4.11).

Corollary 1.4. Consider a Hecke modification 0 → (E′, ϕ′) → (E, ϕ) → ⊕n
j=1Cpj → 0 defined by

n > 1 distinct points {v1, . . . , vn} ∈ PE∗, where (E, ϕ) is (0, n) stable. If there exists ϕu ∈ H0(K)

such that v1, . . . , vn ∈ Nϕ,ϕu , then there is a broken flow line connecting xu = (E, ϕ) ⊕ (Lu, ϕu) and
xℓ = (E′

gr, ϕ
′
gr)⊕ (Lℓ, ϕℓ), where (E′

gr, ϕ
′
gr) is the graded object of the Seshadri filtration of the semistable

Higgs bundle (E′, ϕ′).

For any gradient flow, given upper and lower critical sets Cu and Cℓ, one can define the spaces Fℓ,u (resp.
BFℓ,u) of unbroken flow lines (resp. broken or unbroken flow lines) connecting these sets, and the spaces
Pℓ,u (resp. BPℓ,u) of pairs of critical points connected by an unbroken flow line (resp. broken or unbroken
flow line). These spaces are correspondences with canonical projection maps to the critical sets given by the
projection taking a flow line to its upper and lower endpoints.
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In the setting of Theorem 1.3, let d = degE and r = rank(E) and let Cu and Cℓ be the upper and
lower critical sets. There are natural projection maps to the moduli space of semistable Higgs bundles
Cu → M

Higgs
ss (r, d) and Cℓ → M

Higgs
ss (r, d− 1). Suppose that gcd(r, d) = 1 so that MHiggs

ss (r, d) consists
solely of stable Higgs pairs and hence any Hecke modification is semistable. Since the flow is G-equivariant,
then there is an induced correspondence variety, denoted Mℓ,u in the diagram below.
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As a consequence of Theorem 1.3, we have the following result.

Corollary 1.5. Mℓ,u is the Hecke correspondence.
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A natural question motivated by Floer theory is to ask whether a pair of critical points connected by a
broken flow line can also be connected by an unbroken flow line, i.e whether BPℓ,u = Pℓ,u. For example,
in the context of the Yang-Mills flow, Swoboda [48] constructs a Morse complex by counting flow lines
between critical points of a perturbed Yang-Mills functional. The appearance of the Hecke correspondence
in previous theorem shows that spaces of flow lines for the unperturbed functional carry a lot of interesting
algebraic structure and a natural next step is to develop a criterion distinguishing between broken and un-
broken flow lines. The methods used to prove the Theorem 1.3 and Corollaries 1.4 and 1.5 can be used to
investigate this question using the geometry of secant varieties of the space of Hecke modifications inside
the unstable set of a critical point. For critical points of the type studied in Theorem 1.3, generically this
space of Hecke modifications is the spectral curve of the Higgs field, and so the problem reduces to studying
secant varieties of the spectral curve. This is explained in detail in Section 4.4. In particular, Corollary 4.27
gives a complete classification of the unbroken flow lines on the space of rank 2 Higgs bundles.

Another direction is to apply the methods of this paper to other geometric contexts, such as the Yang-
Mills flow on higher-dimensional compact Kähler manifolds where bubbling occurs (cf. [6], [22], [43]).
For a perturbed heat flow on the loop space of a compact Riemannian manifold, Weber [50] has proved a
backward λ-lemma around a non-degenerate critical point, and it would be interesting to use the techniques
here to obtain information about flow lines for the unperturbed flow. Another case of interest is the nonlinear
Cauchy-Riemann equations studied in Floer theory [11], [12], [13]. The bounded trajectories studied in [13]
have many properties in common with spaces of flow lines in finite-dimensional Morse theory, and it would
also be interesting to see if the methods used here also apply in the setting of [13].

The paper is organised as follows. In Section 2 we set the notation for the paper, prove a slice theorem
around the critical points and derive some preliminary estimates for the YMH flow near a critical point.
Section 3 contains the main part of the analysis of the YMH flow around a critical point, which leads to
the proof of Theorem 1.1 and Corollary 1.2. In Section 4 we interpret the analytic results on flow lines
in terms of the Hecke correspondence, leading to the proof of Theorem 1.3, Corollary 1.4 and Corollary
1.5. Appendix A contains a proof that a solution to the reverse YMH flow with a given initial condition is
necessarily unique.

Acknowledgements. I would like to thank George Daskalopoulos, Mudumbai Narasimhan and Richard
Wentworth for their interest in the project, as well as George Hitching for useful discussions about [4] and
[17].

2. PRELIMINARIES

2.1. The Yang-Mills-Higgs flow on a compact Riemann surface. Fix a compact Riemann surface X
and a smooth complex vector bundle E → X . Choose a normalisation so that vol(X) = 2π. Fix ∂̄A0 :

Ω0(E) → Ω0,1(E) such that ∂̄A0 is C-linear and satisfies the Leibniz rule ∂̄A0(fs) = (∂̄f)s + f(∂̄A0s)

for all f ∈ Ω0(X) and s ∈ Ω0(E). Let A0,1 denote the affine space ∂̄A0 + Ω0,1(End(E)). A theorem
of Newlander and Nirenberg identifies A0,1 with the space of holomorphic structures on E. The space of
Higgs bundles on E is

(2.1) B := {(∂̄A, ϕ) ∈ A0,1 × Ω1,0(End(E)) : ∂̄Aϕ = 0}
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The complex gauge group is denoted GC and acts on B by g ·(∂̄A, ϕ) = (g∂̄Ag
−1, gϕg−1). IfX is a complex

manifold with dimCX > 1 then we impose the extra integrability conditions (∂̄A)
2 = 0 and ϕ ∧ ϕ = 0.

Given a Hermitian metric on E, let A denote the space of connections on E compatible with the metric,
and let G ⊂ GC denote the subgroup of unitary gauge transformations. The Chern connection construction
defines an injective map A0,1 ↩→ A which is a diffeomorphism when dimCX = 1. Given ∂̄A ∈ A0,1, let FA
denote the curvature of the Chern connection associated to ∂̄A via the Hermitian metric. The metric induces
a pointwise norm | · | : Ω2(End(E)) → Ω0(X,R) and together with the Riemannian structure on X an L2

norm ∥ · ∥L2 : Ω2(End(E)) → R. The Yang-Mills-Higgs functional YMH : B → R is defined by

(2.2) YMH(∂̄A, ϕ) = ∥FA + [ϕ, ϕ∗]∥2L2 =

∫
X
|FA + [ϕ, ϕ∗]|2 dvol

When dimCX = 1, the Hodge star defines an isometry ∗ : Ω2(End(E)) → Ω0(End(E)) ∼= LieGC.
For any initial condition (A0, ϕ0), the following equation for gt ∈ GC has a unique solution on the interval
t ∈ [0,∞) (cf. [8], [45])

(2.3)
∂g

∂t
g−1
t = −i ∗ (Fgt·A0 + [gt · ϕ0, (gt · ϕ0)∗]), g0 = id .

This defines a unique curve (At, ϕt) = gt · (A0, ϕ0) ∈ B which is a solution to the downwards Yang-Mills-
Higgs gradient flow equations

∂A

∂t
= i∂̄A ∗ (FA + [ϕ, ϕ∗])

∂ϕ

∂t
= i [ϕ, ∗(FA + [ϕ, ϕ∗])] .

(2.4)

for all t ∈ [0,∞). The result of [51, Thm 3.1] shows that the solutions converge to a unique limit (A∞, ϕ∞)

which is a critical point of YMH. Moreover [51, Thm. 4.1] shows that the isomorphism class of this limit is
determined by the graded object of the Harder-Narasimhan-Seshadri double filtration of the initial condition
(A0, ϕ0).

Remark 2.1. Since the space B of Higgs bundles is singular, then we define the gradient of YMH as the
gradient of the function ∥FA + [ϕ, ϕ∗]∥2L2 defined on the ambient smooth space T ∗A0,1, which contains
the space B as a singular subset. When the initial condition is a Higgs bundle, then a solution to (2.4)
is generated by the action of the complex gauge group GC which preserves B. Therefore the solution to
(2.4) is contained in B and so from now on we can consider the flow (2.4) as a well-defined gradient flow
on the singular space B. Throughout the paper we define a critical point to be a stationary point for the
Yang-Mills-Higgs flow.

Definition 2.2. A critical point for YMH is a pair (A,ϕ) ∈ B such that

(2.5) ∂̄A ∗ (FA + [ϕ, ϕ∗]) = 0, and [ϕ, ∗(FA + [ϕ, ϕ∗])] = 0.

The critical point equations (2.5) imply that the bundleE splits into holomorphic ϕ-invariant sub-bundles
E1 ⊕ · · · ⊕ En, such that the induced Higgs structure (∂̄Aj , ϕj) on the bundle Ej minimises the Yang-
Mills-Higgs functional on the bundle Ej (cf. [1, Sec. 5] for holomorphic bundles and [51, Sec. 4] for
Higgs bundles). In particular, each Higgs pair (∂̄Aj , ϕj) is polystable. The decomposition is not necessarily
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unique due to the possibility of polystable bundles with the same slope, however it is unique if we impose the
condition that (E1, ϕ1)⊕· · ·⊕(En, ϕn) is the graded object of the socle filtration of the Higgs bundle (E, ϕ)
(see [20] for holomorphic bundles and [2, Sec. 4] for Higgs bundles). With respect to this decomposition
the curvature ∗(FA + [ϕ, ϕ∗]) ∈ Ω0(ad(E)) ∼= Lie(G has the following block-diagonal form

(2.6) i ∗ (FA + [ϕ, ϕ∗]) =


ν1 · idE1 0 · · · 0

0 ν2 · idE2 · · · 0
...

...
. . .

...
0 0 · · · νn · idEn


where νj = slope(Ej) and we order the eigenvalues by νj < νk for all j < k.

Definition 2.3. A Yang-Mills-Higgs flow line connecting an upper critical point xu = (∂̄Au , ϕu) and a lower
critical point xℓ = (∂̄Aℓ

, ϕℓ) is a continuous map γ : R → B such that

(1) dγ
dt satisfies the Yang-Mills-Higgs flow equations (2.4), and

(2) limt→−∞ γ(t) = xu and limt→∞ γ(t) = xℓ, where the convergence is in the C∞ topology on B.

Definition 2.4. The unstable set W−
xu of a non-minimal critical point xu = (∂̄Au , ϕu) is defined as the set of

all points y0 ∈ B such that a solution yt to the Yang-Mills-Higgs flow equations (2.4) exists for all (−∞, 0]

and yt → x in the C∞ topology on B as t→ −∞.

2.2. A local slice theorem. In this section we define local slices around the critical points and describe the
isomorphism classes in the negative slice.

Definition 2.5. Let x = (∂̄A, ϕ) ∈ B. The slice through x is the set of deformations orthogonal to the GC

orbit at x.

(2.7) Sx = {(a, φ) ∈ Ω0,1(End(E))⊕ Ω1,0(End(E)) | ∂̄∗Aa− ∗[∗ϕ∗, φ] = 0, (∂̄A + a, ϕ+ φ) ∈ B}.

If x is a critical point of YMH with β = ∗(FA + [ϕ, ϕ∗]), then the negative slice S−
x is the subset

(2.8) S−
x = {(a, φ) ∈ Sx | lim

t→∞
eiβt · (a, φ) = 0}.

Remark 2.6. Near the critical point x = (∂̄A, ϕ), the dominant term in the gradient flow equation (2.3) for
∂gt
∂t g

−1
t is −i∗(FA+[ϕ, ϕ∗]) = −iβ. Therefore the linearised flow with initial condition x+δx for δx ∈ Sx

has the form e−iβt · (x+ δx) = x+ e−iβt · δx, and the negative slice S−
x is the subset of initial conditions

for which the linearised flow converges to the critical point x as t→ −∞. The action of this linearised flow
on δx = (a, φ) ∈ Sx is given by conjugation

e−iβt · (a, ϕ) =
(
e−iβtaeiβt, e−iβtφeiβt

)
.

Therefore, if iβ = i ∗ (FA+ [ϕ, ϕ∗]) has the block diagonal form of (2.6), then the negative slice consists of
all the endomorphisms which are strictly upper-triangular with respect to (2.6).

To prove Lemma 2.8 and Proposition 2.9 below, one needs to first define the slice on the L2
1 completion of

the space of Higgs bundles with the action of the L2
2 completion of the gauge group. The following lemma

shows that if the critical point x is C∞ then the elements in the slice Sx are also C∞.
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Lemma 2.7. Let x = (∂̄A, ϕ) be a critical point of YMH in the space of C∞ Higgs bundles, let Sx
be the set of solutions to the slice equations in the L2

1 completion of the space of Higgs bundles and let
δx = (a, φ) ∈ Sx. Then δx is C∞.

Proof. The slice equations are

∂̄Aφ+ [a, ϕ] + [a, φ] = 0

∂̄∗Aa− ∗[ϕ∗, ∗φ] = 0

Since (a, φ) ∈ L2
1 and (∂̄A, ϕ) is C∞, then the second equation above implies that ∂̄∗Aa ∈ L2

1 and so a ∈ L2
2

by elliptic regularity. After applying Sobolev multiplication L2
2×L2

1 → L4, then [a, φ] ∈ L4 and so the first
equation above implies that ∂̄Aφ ∈ L4, hence φ ∈ L4

1. Repeating this again shows that φ ∈ L2
2, and then

one can repeat the process inductively to show that δx = (a, φ) is C∞. �

The following result gives a local description of the space of Higgs bundles in terms of the slice. The
infinitesimal action of GC at x ∈ B is denoted by ρx : Lie(GC) ∼= Ω0(End(E)) → Ω0,1(End(E)) ⊕
Ω1,0(End(E)). Explicitly, for x = (∂̄A, ϕ) and u ∈ Ω0(End(E)), we have ρx(u) = −(∂̄Au, [ϕ, u]). The
L2-orthogonal complement of ker ρx ⊆ Ω0(End(E)) is denoted (ker ρx)

⊥.

Lemma 2.8. Fix x ∈ B. Then the map ψ : (ker ρx)
⊥ × Sx → B given by ψ(u, δx) = exp(u) · (x+ δx) is

a local homeomorphism.

Proof. The result of [51, Prop. 4.12] shows that the statement is true for the L2
1 completion of the space of

Higgs bundles and the L2
2 completion of the gauge group, and so it only remains to show that it remains true

on restricting to the space of C∞ Higgs bundles with the action of the group of C∞ gauge transformations.
The proof of this statement follows from elliptic regularity using the same method as [51, Cor. 4.17]. �

Now let x = (∂̄A, ϕ) be a critical point and let β = µ(x) := ∗(FA+ [ϕ, ϕ∗]). The Lie algebra Lie(GC) ∼=
Ω0(End(E)) decomposes into eigenbundles for the adjoint action of eiβ . We denote the positive, zero
and negative eigenspaces respectively by Ω0(End(E)+), Ω0(End(E)0) and Ω0(End(E)−). The positive
and negative eigenspaces are nilpotent Lie algebras with associated unipotent groups GC

+ and GC
−. The

subgroups of G and GC consisting of elements commuting with eiβ are denoted Gβ and GC
β respectively.

Since Ω0(End(E)0)⊕ Ω0(End(E)+) is also a Lie algebra then there is a corresponding subgroup denoted
GC
∗ .
Let Gx and GC

x denote the respective isotropy groups of x in G and GC. There is an inclusion (Gx)
C ⊆ GC

x ,
however at a non-minimal critical point the two groups may not be equal (in the context of reductive group
actions on finite-dimensional affine spaces, this question has been studied by Sjamaar in [47, Prop. 1.6]).
At a general critical point, the Higgs bundle (E, ϕ) splits into polystable Higgs sub-bundles (E1, ϕ1) ⊕
· · · ⊕ (En, ϕn), where we order by increasing slope. Then a homomorphism u ∈ Hom(Ej , Ek) satisfying
uϕj = ϕku will be zero if j > k since (Ej , ϕj) and (Ek, ϕk) are polystable and slope(Ej) > slope(Ek),
however if j < k then the homomorphisms do not necessarily vanish in which case (Gx)

C ( GC
x . Therefore

ker ρx = Lie(GC
x ) ⊂ Ω0(End(E)+)⊕ Ω0(End(E)0), and so GC

x ⊂ GC
∗ .
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The result of [5, Thm. 2.16] shows that the L2
2 completion of the gauge group satisfies GC ∼= GC

∗ ×Gβ
G.

We will use (ker ρx)
⊥
∗ to denote (ker ρx)

⊥ ∩ (Ω0(End(E))+ ⊕ Ω0(End(E)0). At a critical point x, the
above argument shows that isotropy group GC

x is contained in GC
∗ , and so we have the following refinement

of Lemma 2.8.

Proposition 2.9. Let x ∈ B be a critical point of YMH. Then there exists a G-invariant neighbourhood U of
x and a neighbourhood U ′ of [id, 0, 0] in G×Gβ

(
(ker ρx)

⊥
∗ × Sx

)
such that ψ : U ′ → U is a G-equivariant

homeomorphism.

The results of Section 3 show that the negative slice S−
x is complex gauge-equivalent to the unstable set

W−
x of a critical point. The next lemma gives a complete classification of the isomorphism classes in S−

x .
Together with the results of Section 3, this is used in Section 4 to classify critical points connected by flow
lines.

Lemma 2.10. Let x = (E1, ϕ1) ⊕ · · · ⊕ (En, ϕn) be a critical point of YMH with curvature as in (2.6)
with the Higgs polystable subbundles ordered so that slope(Ej) < slope(Ek) iff j < k. If δx ∈ S−

x ∩ U
then x+ δx has a filtration (E(1), ϕ(1)) ⊂ · · · ⊂ (E(n), ϕ(n)) by Higgs subbundles such that the successive
quotients are (E(k), ϕ(k))/(E(k−1), ϕ(k−1)) = (Ek, ϕk). Conversely, there exists a neighbourhood U of x
such that if a Higgs bundle y = (E, ϕ) ∈ U admits such a filtration then it is gauge equivalent to x+ δx for
some δx ∈ S−

x .

Proof. The first statement follows directly from the definition of the negative slice in (2.8).
Let End(E)− be the subbundle of End(E) corresponding to the negative eigenspaces of iβ and let

ρ−x : Ω0(End(E)−) → Ω0,1(End(E)−) ⊕ Ω1,0(End(E)−) be the restriction of the infinitesimal action to
the negative eigenspaces. Then

im ρ−x = im ρx ∩ Ω0,1(End(E)−)⊕ Ω1,0(End(E)−)

and

(2.9) ker(ρ−x )
∗ ⊇ ker ρ∗x ∩ Ω0,1(End(E)−)⊕ Ω1,0(End(E)−)

Since im ρx ⊕ ker ρ∗x
∼= Ω0,1(End(E))⊕ Ω1,0(End(E)) by [51, Lem. 4.9] then

Ω0,1(End(E)−)⊕ Ω1,0(End(E)−) = (im ρx ⊕ ker ρ∗x) ∩
(
Ω0,1(End(E)−)⊕ Ω1,0(End(E)−)

)
⊆
(
im ρ−x ⊕ ker(ρ−x )

∗) ⊆ Ω0,1(End(E)−)⊕ Ω1,0(End(E)−)

and so (2.9) must be an equality, therefore Ω0,1(End(E)−)⊕Ω1,0(End(E)−) ∼= im ρ−x ⊕ker(ρ−x )
∗. There-

fore the function

ψ− : (ker ρ−x )
⊥ × ker(ρ−x )

∗ → Ω0,1(End(E)−)⊕ Ω1,0(End(E)−)

(u, δx) 7→ eu · (x+ δx)

is a local diffeomorphism at 0. If δx ∈ S−
x then x + δx ∈ B, and so eu · (x + δx) ∈ B, since the

complex gauge group preserves the space of Higgs bundles. Conversely, if eu · (x + δx) ∈ B then x +

δx ∈ B and so δx ∈ S−
x . Therefore ψ restricts to a local homeomorphism (ker ρ−x )

⊥ × S−
x → B ∩(

Ω0,1(End(E)−)⊕ Ω1,0(End(E)−)
)
. �
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The next two results concern a sequence of points gt · z in a GC orbit which approach a critical point x
in the L2

k norm and for which YMH(z) < YMH(x). Since x is critical and YMH(z) < YMH(x) then
x ∈ GC · z \ GC · z, and therefore ∥gt∥L2

k+1
→ ∞. The result below shows that the C0 norm of the function

σ(ht) = Tr(ht) + Tr(h−1
t )− 2 rank(E) must also blow up.

Lemma 2.11. Let x ∈ B be a critical point of YMH and let z ∈ B be any point such that YMH(z) <

YMH(x). Suppose that there exists a sequence of gauge transformations gt ∈ GC such that gt · z → x in
L2
k. Then the change of metric ht = g∗t gt satisfies supX σ(ht) → ∞.

Proof. Let U be the neighbourhood of x from Lemma 2.8. Since gt · z → x, then there exists T such
that gt · z ∈ U for all t ≥ T . Therefore there exists ft in a neighbourhood of the identity in GC such that
ft · gt · z ∈ Sx. The uniqueness of the decomposition from the slice theorem shows that if t > T , then
ft · gt · z = ft,T · fT · gT · z with ft,T ∈ GC

x . Therefore t→ ∞ implies that ft,T diverges in GC
x . Fix a point p

on the surface X , and let GC
0 be the based gauge group consisting of complex gauge transformations that are

the identity at p. Recall that GC
0 is a normal subgroup of GC and we have the following short exact sequence

of groups (cf. [1, Sec. 13])
1 → GC

0 → GC → GL(n,C) → 1.

Since GC
0 acts freely on the space of connections (and hence on B), then restriction to the fibre over p defines

a bijective correspondence between GC
x ⊂ GC and a subgroup of GL(n,C) via the exact sequence above.

Therefore ft,T diverges in GC
x implies that the restriction of ft,T to the fibre over p diverges in GL(n,C),

and so the C0 norm of ft,T diverges to ∞, and hence the same is true for gt = f−1
t · ft,T · fT · gT · z

since gT is fixed and both ft and fT are contained in a fixed neighbourhood of the identity in GC. Therefore
supX σ(ht) → ∞. �

Corollary 2.12. Let x be a critical point of YMH. Then for each neighbourhood V of x in the L2
k topology

on B and each constant C > 0, there exists a neighbourhood U of x such that if z /∈ V and YMH(z) <

YMH(x), then y = g · z with h = g∗g satisfying supX σ(h) ≤ C implies that y /∈ U .

Proof. If no such neighbourhood U exists, then we can construct a sequence yt = gt · z converging to x in
L2
k such that ht = g∗t gt satisfies supX σ(ht) ≤ C for all t, however this contradicts the previous lemma. �

2.3. Modifying the YMH flow in a neighbourhood of a critical point. Let x be a critical point, let
β = µ(x) = ∗(FA + [ϕ, ϕ∗]), and let GC

∗ be the subgroup defined in the previous section. In this section
we explain how to modify the YMH flow near x so that the gauge transformation generating the flow is
contained in GC

∗ . The reason for modifying the flow is so that we can apply the distance-decreasing formula
of Lemma 2.19, which is used for the convergence result of Section 3.2.

Let U be a G-invariant neighbourhod of x such that U is homeomorphic to a neighbourhood of [id, 0, 0]
in G×Gβ

(
(ker ρx)

⊥
∗ × Sx

)
by Proposition 2.9. Let V ⊂ U be the image of (ker ρx)⊥∗ ×Sx under the home-

omorphism from Proposition 2.9. For each y ∈ V , let γ−(y) be the component of iµ(y) in Ω0(End(E)−).
Since µ is G-equivariant then we can extend γ− equivariantly from V to all of U using the action of G.
Define the map γ : U → Lie(G) by

(2.10) γ(y) = γ−(y)− γ−(y)
∗
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so that −iµ(y) + γ(y) ∈ Lie(GC
∗ ).

Definition 2.13. The modified flow with initial condition y0 ∈ U is the solution to

(2.11)
dy

dt
= −Iρx(µ(y)) + ρx(γ(y)).

More explicitly, on the space of Higgs bundles y = (∂̄A, ϕ) satisfies

∂A

∂t
= i∂̄A ∗ (FA + [ϕ, ϕ∗])− ∂̄Aγ(∂̄A, ϕ)

∂ϕ

∂t
= i[ϕ, ∗(FA + [ϕ, ϕ∗])]− [ϕ, γ(∂̄A, ϕ)]

In analogy with (2.3), the modified flow is generated by the action of the gauge group yt = gt · y0, where
gt satisfies the equation

(2.12)
∂gt
∂t
g−1
t = −iµ(gt · y0) + γ(gt · y0), g0 = id .

As before, let V ⊂ U be the image of (ker ρx)⊥∗ × Sx under the homeomorphism from the slice theorem
(Proposition 2.9). Note that if y0 ∈ V then ∂gt

∂t g
−1
t ∈ Lie(GC

∗ ), so gt ∈ GC
∗ and the solution to the modified

flow remains in V for as long as it remains in the neighbourhood U .

Lemma 2.14. Let yt = gt · y0 be the solution to the YMH flow (2.3) with initial condition y0. Then there
exists st ∈ G solving the equation

(2.13)
ds

dt
s−1
t = γ(st · yt), s0 = id

such that ỹt = st · yt is a solution to the modified flow equation (2.11) with initial condition y0.

Proof. Since γ is G-equivariant then (2.13) reduces to
ds

dt
s−1
t = Adst γ(yt).

Since γ(yt) ∈ Lie(G) is already defined by the gradient flow yt, then this equation reduces to solving an
ODE on the fibres of the bundle, and therefore existence of solutions follows from ODE existence theory.
Let g̃t = st · gt. A calculation shows that

dg̃t
dt
g̃−1
t =

ds

dt
s−1
t +Adst

(
dg

dt
g−1
t

)
= γ(st · yt)− iAdst µ(yt)

= γ(ỹt)− iµ(ỹt)

= γ(g̃t · y0)− iµ(g̃t · y0),

and so ỹt = g̃t · y0 = st · yt is a solution to the modified flow (2.11) with initial condition y0. �

As a corollary, we see that the change of metric is the same for the YMH flow (2.3) and the modified flow
(2.12).

Corollary 2.15. Let yt = gt · y0 be a solution to the Yang-Mills-Higgs flow equation (2.3) and ỹt = g̃t · y0
be a solution to the modified flow equation (2.12). Then ht = g∗t gt = g̃∗t g̃t.
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Finally, we prove that convergence for the upwards YMH flow implies convergence for the modified flow.

Lemma 2.16. Let x be a critical point and let y0 ∈ W−
x . Then the modified flow with initial condition y0

exists for all t ∈ (−∞, 0] and converges in the C∞ topology to a point in G · x.

Proof. Let yt be the YMH flow with initial condition y0 and ỹt = st ·yt the modified flow. By the definition
of W−

x the YMH flow exists for all t ∈ (−∞, 0] and yt → x in the C∞ topology. Existence of the modified
flow then follows from Lemma 2.14. Proposition 2.21 shows that yt → x exponentially in L2

k for all k, and
so the same is true for γ(yt). Therefore the length of the modified flow line satisfies∫ 0

−∞
∥Iρỹt(µ(ỹt))− ρỹt(γ(ỹt))∥L2

k
dt =

∫ 0

−∞
∥Iρyt(µ(yt))− ρyt(γ(yt))∥L2

k
dt

≤
∫ 0

−∞
∥ρyt(µ(yt))∥L2

k
dt+

∫ 0

−∞
∥ρyt(γ(yt))∥L2

k
dt

which is finite since the length
∫ 0
−∞ ∥ρyt(µ(yt))∥L2

k
dt of the YMH flow line is finite, yt is bounded and

γ(yt) → 0 exponentially. This is true for all k, and so the modified flow converges in the C∞ topology. �

2.4. Preliminary estimates for the YMH flow in a neighbourhood of a critical point. Given eigenvalues
for the adjoint action of iβ on Lie(GC) labelled by λ1 ≤ · · · ≤ λk < 0 ≤ λk+1 ≤ · · · (with respect to (2.6),
the negative eigenvalues correspond to λℓ = νi− νj for i < j), then for any y ∈ S−

x and any norm, we have
the Lipschitz bounds

(2.14) eλ1t∥y − x∥ ≤ ∥eiβt · y − x∥ ≤ eλkt∥y − x∥.

Lemma 2.17. For any critical point x there existsC > 0 such that for any y ∈ S−
x , we have ∥µ(y)−β∥C0 ≤

C∥y − x∥2C0 .

Proof. Let y ∈ S−
x and define δy := y − x ∈ V ∼= TxV . Then the defining equation for the moment map

shows that for all v ∈ k, we have

dµx(δy) · v = ω(ρx(v), δy) = ⟨Iρx(v), δy⟩

By the definition of the slice, each δy ∈ S−
x is orthogonal to the infinitesimal action of GC at x, and so

⟨Iρx(v), δy⟩ = 0 for all v ∈ k. Therefore dµx(δy) = 0. Since the moment map µ(∂̄A, ϕ) = FA + [ϕ, ϕ∗] is
quadratic, then we have

∥µ(y)− µ(x)∥C0 ≤ ∥dµx(δy)∥C0 + C∥δy∥2C0 = C∥δy∥2C0 .

Since the moment map is G-equivariant and the norms above are all G-invariant, then the constant C is
independent of the choice of critical point in the orbit G · x. �

Given g ∈ GC, let g∗ denote the adjoint with respect to the Hermitian metric on E and let G act on GC by
left multiplication. In every equivalence class of the space of metrics GC/G there is a unique positive definite
self-adjoint section h, which we use from now on to represent elements of GC/G. Given h = g∗g ∈ GC/G,
define µh : B → Ω0(End(E)) ∼= Lie(GC) by

(2.15) µh(y) = Adg−1 (µ(g · y)) .
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Since the moment map is G-equivariant, then for any k ∈ G we have

Adg−1 Adk−1 (µ(k · g · y)) = Adg−1 (µ(g · y))

and so µh is well-defined on GC/G. The length of a geodesic in the space of positive definite Hermitian
matrices is computed in [27, Ch. VI.1]. Following [8, Prop. 13] (see also [45, Prop. 6.3]), it is more
convenient to define the distance function σ : GC/G → R

(2.16) σ(h) = Trh+Trh−1 − 2 rank(E).

As explained in [8], the function supX σ is not a norm in the complete metric space GC/G, however we do

have ht
C0

−→ h∞ in GC/G if and only if supX σ(hth
−1
∞ ) → 0. Note that if h1 = g∗1g1 and h2 = g∗2g2, then

(2.17) σ(h1h
−1
2 ) = σ

(
g∗1g1g

−1
2 (g∗2)

−1
)
= σ

(
(g1g

−1
2 )∗g1g

−1
2

)
.

Recall from [8], [45] that we have the following distance-decreasing formula for a solution to the down-
wards YMH flow. Since the change of metric is the same for the modified flow by Corollary 2.15, then
(2.18) is also valid for the modified flow.

Lemma 2.18. Let y1, y2 ∈ B and suppose that y1 = g0 · y2 for g0 ∈ GC. For j = 1, 2, define yj(t) to be the
solution of the YMH flow (2.4) with initial condition yj . Define gt by y1(t) = gt · y2(t) and let ht = g∗t gt

be the associated change of metric. Then

(2.18)
(
∂

∂t
+∆

)
σ(ht) ≤ 0.

Since Lie(GC
∗ ) = Ω0(End(E))0 ⊕ Ω0(End(E))+ and the adjoint action of e−iβt is the identity on

Ω0(End(E))0 and strictly contracting on Ω0(End(E))+, then we have the following lemma which is used
in Section 3.2.

Lemma 2.19. Given any g0 ∈ GC
∗ , let gt = e−iβtg0e

iβt and ht = g∗t gt. Then ∂
∂tσ(ht) ≤ 0.

In the proof of the distance-decreasing formula for the Yang-Mills flow [8, Prop. 13], Donaldson proves
that for any holomorphic structure ∂̄A and any complex gauge transformation g, the change of metric h =

g∗g satisfies

−2iΛTr(h(g−1(Fg·A)g − FA)) = −2iΛTr
(
∂̄A∂Ah− (∂̄Ah)h(∂Ah)

)
≤ −∆Tr(h).

Note that the notation here differs slightly from that in [8, Prop. 13] which considers a fixed holomorphic
structure and a varying Hermitian metric, while here we consider a fixed Hermitian metric and a varying
holomorphic structure. As explained on [8, p5] the two viewpoints are equivalent. A similar calculation
shows that

2iΛTr(h−1(g−1(Fg·A)g − FA)) ≤ −∆Tr(h−1).

Analogous calculations for a Higgs pair y = (∂̄A, ϕ) using µ(y) = Λ(FA + [ϕ, ϕ∗]) instead of the
curvature ΛFA gives us the following result for the Yang-Mills-Higgs flow, which is used in the proof of
Lemma 3.2.
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Lemma 2.20.

−2iTr ((µh(y)− µ(y))h) + ∆Tr(h) ≤ 0

2iTr
(
(µh(y)− µ(y))h−1

)
+∆Tr(h−1) ≤ 0.

2.5. Exponential convergence of the backwards flow. In this section we prove that if a solution to the
backwards YMH flow converges to a critical point, then it must do so exponentially in each Sobolev norm.

Proposition 2.21. Let yt be a solution to the YMH flow (2.4) such that limt→−∞ yt = x. Then for each
positive integer k there exist positive constants C1 and η such that ∥yt − x∥L2

k
≤ C1e

ηt for all t ≤ 0.

The proof of the proposition reduces to the following lemmas. First recall from the slice theorem that
there is a unique decomposition

y = eu · (x+ z)

for u ∈ (ker ρx)
⊥ and z ∈ Sx. We can further decompose z = z≥0 + z−, where z− ∈ S−

x is the component
of z in the negative slice and z≥0 = z − z−. At the critical point x we have the decomposition End(E) ∼=
End(E)+ ⊕ End(E)0 ⊕ End(E)− according to the eigenspaces of iβ (cf. Sec. 2.2). Then with respect to
this decomposition z≥0 is the component of z in Ω0,1(End(E))+⊕End(E)0)⊕Ω1,0(End(E)+⊕End(E)0)

and z− is the component in Ω0,1(End(E)−)⊕Ω1,0(End(E)−). In terms of the action of β = µ(x) we have
limt→∞ eiβt · z− = 0 and limt→∞ e−iβt · z≥0 = z0, where z0 is the component of z in Ω0,1(End(E)0) ⊕
Ω1,0(End(E)0). Note that if y = eu · (x+ z) is a Higgs bundle, then x+ z is a Higgs bundle since eu ∈ GC

preserves the space of Higgs bundles, however x+ z≥0 may not be a Higgs bundle as the pair (∂̄A≥0
, ϕ≥0)

representing x+ z≥0 may not satisfy ∂̄A≥0
ϕ≥0 = 0. Even though ϕ≥0 may not be holomorphic, we can still

apply the principle that curvature decreases in subbundles and increases in quotient bundles and follow the
same idea as [1, Sec. 8 & 10] to prove the following lemma.

Lemma 2.22. (1) gradYMH(eu · (x+ z≥0)) is tangent to the set {z− = 0}.
(2) YMH(eu · (x+ z≥0)) ≥ YMH(x).

Proof. By definition of z− as the component of z ∈ Sx in Ω0,1(End(E)−) ⊕ Ω1,0(End(E)−), the subset
{z− = 0} consists of all pairs (∂̄A, ϕ) such that (up to complex gauge transformations) the bundleE admits a
filtration E1 ⊂ · · · ⊂ En = E by holomorphic subbundles of the same Harder-Narasimhan type as x which
are also preserved by ϕ. Note that this does not require ϕ to be holomorphic since we have constructed
the filtration explicitly using the decomposition End(E) ∼= End(E)+ ⊕ End(E)0 ⊕ End(E)−. Since
gradYMH(eu · (x+ z≥0)) is tangent to the complex gauge orbit through eu · (x+ z≥0), and the existence
of a filtration of a given type is preserved by the action of the complex gauge group, then gradYMH(eu ·
(x+ z≥0)) is tangent to the set {z− = 0}.

Below are the details of the proof of the second part of the lemma for the case of a two-step filtration.
This can be generalised to an arbitrary filtration in the same way as [1, Sec. 8].

Let ξ be a convex invariant function on the Lie algebra of the structure group. For the following, we only
need to consider the special case of ξ(X) = Tr(XX∗) but it is worth noting that the entire argument works
for any convex invariant ξ. Consider a critical point x such that the C∞ bundle E decomposes as a direct
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sum E1 ⊕E2 and the Higgs bundle x is the direct sum of Hermitian-Yang-Mills-Higgs pairs on E1 and E2.
Then YMH(x) =

∫
X ξ(µ) dvol, where

µ =

(
degE1

rankE1
· id 0

0 degE2

rankE2
· id

)
Consider an extension

0 → (∂̄A1 , ϕ1) → (∂̄A, ϕ) → (∂̄A2 , ϕ2) → 0

for which (∂̄A1 , ϕ1) and (∂̄A2 , ϕ2) are arbitrary Higgs pairs on E1 and E2. Locally, we can write the
holomorphic structure ∂̄A and the Higgs field ϕ as follows

∂̄A =

(
∂̄A1 a
0 ∂̄A2

)
, ∂A,h =

(
∂A1,h 0
−a∗ ∂A2,h

)
, ϕ =

(
ϕ1 φ
0 ϕ2

)
, ϕ∗h =

(
ϕ∗1 0
φ∗ ϕ∗2

)
Note that we are not assuming that ∂̄Aϕ = 0. From now on we suppress the notation for the metric h. We
then have (cf. [1, (8.14)])

FA + [ϕ, ϕ∗] =

(
FA1 − a ∧ a∗ dAa

−dAa∗ FA2 − a∗ ∧ a

)
+

(
[ϕ1, ϕ

∗
1] + φ ∧ φ∗ φ ∧ ϕ∗2 + ϕ∗1 ∧ φ

ϕ2 ∧ φ∗ + φ∗ ∧ ϕ1 [ϕ2, ϕ
∗
2] + φ∗ ∧ φ

)
Now for j = 1, 2, let fj , αj be scalar rank(Ej) × rank(Ej) matrix valued functions (cf. [1, (8.15)]) such
that

Tr fj = ∗Tr(FAj + [ϕj , ϕ
∗
j ]), Trα1 = ∗Tr(a ∧ a∗ − φ ∧ φ∗) = − ∗ Tr(a∗ ∧ a− φ∗ ∧ φ) = −Trα2

Then for any convex invariant function ξ, the results of [1, Sec. 12] show that

ξ(∗(FA + [ϕ, ϕ∗]) ≥ ξ

(
f1 − α1 0

0 f2 − α2

)
If we normalise so that vol(X) = 1 then combining the above inequality with Jensen’s inequality gives us

YMH(∂̄A, ϕ) =

∫
X
ξ (∗(FA + [ϕ, ϕ∗])) dvol ≥ ξ

(∫
X

(
f1 − α1 0

0 f2 − α2

)
dvol

)
Since the Lie bracket [ϕ, ϕ∗] is traceless, then the degree of Ej is

kj =
i

2π

∫
X
Tr(FAj + [ϕj , ϕ

∗
j ]) =

i

2π

∫
X
Tr(fj) dvol

Now we note that −i∗Tr(a∧a∗) ≥ 0 and i∗Tr(φ∧φ∗) ≥ 0. The difference in sign is because a ∈ Ω0,1

and φ ∈ Ω1,0. For completeness, we give all the details. Choose a local coordinate z = x + iy such that
dx ∧ dy = dvol. First note that dz̄ ∧ dz = 2idx ∧ dy = 2i dvol. Therefore −i ∗ (dz̄ ∧ dz) = 2 and
i ∗ (dz ∧ dz̄) = 2. Writing a = g1dz̄ in a local neighbourhood, we have

−i ∗ Tr(a ∧ a∗) = −i ∗ Tr(g1g∗1dz̄ ∧ dz) = 2Tr(g1g
∗
1) ≥ 0

and writing φ = g2dz in a local neighbourhood we have

i ∗ Tr(φ ∧ φ∗) = i ∗ Tr(g2g∗2dz ∧ dz̄) = 2Tr(g2g
∗
2) ≥ 0

For j = 1, 2, define bj = − i
2π

∫
X αj . Then the above calculations show that b1 is a scalar matrix with

non-negative entries, and b2 is a scalar matrix with non-positive entries.
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Putting all of this together, we have∫
X

(
f1 − α1 0

0 f2 − α2

)
dvol = −2πi(µ+ b)

where

µ =

(
degE1

rankE1
· id 0

0 degE2

rankE2
· id

)
, b =

(
b1 0
0 b2

)
Since Trα1 = −Trα2, then Tr b = 0 and so the inequalities in [1, Sec. 12] for convex invariant functions
show that ∥FA + [ϕ, ϕ∗]∥2L2

≥ ξ(µ) = YMH(x). �

The next lemma shows that the component in the negative slice is decreasing exponentially.

Lemma 2.23. Let yt = eu · (x+ z≥0+ z−) be a solution to the YMH flow such that limt→−∞ yt = x. Then
there exist positive constants K1 and K2 such that ∥z−∥2L2

1
≤ K1e

K2t for all t ≤ 0.

Proof. The proof follows the idea of [26, Sec. 10]. The downwards gradient flow equation for z− is

∂z−
∂t

= Lz− +N−(u, z≥0, z−)

where L is a linear operator and the derivative of N− vanishes at the origin. Since z− is orthogonal to the
GC orbit through x, then the following calculation shows that the linear part satisfies eLtz− = e−iβt · z−.

Let (∂̄A∞ , ϕ∞) be the critical point x and (∂̄A, ϕ) = (∂̄A∞ , ϕ∞) + (a, φ) be a point in the slice Sx. The
condition that (a, φ) is orthogonal to the GC orbit through (∂̄A, ϕ) is given by

∂̄∗A∞a− ∗̄[ϕ, ∗̄φ] = 0

We can rewrite this orthogonality condition as

i ∗ ∂Aa+ i ∗ [ϕ∗, φ] = 0 ⇔ i ∗ ∂̄Aa∗ − i ∗ [ϕ, φ∗] = 0

Subtracting the first equation from the second and using the fact that the Hodge star is an isomorphism
Ω2 ∼= Ω0 gives us

dA(a− a∗) + [ϕ, φ∗] + [φ, ϕ∗] = 0.

Note also that the curvature can be written as

FA+a + [ϕ+ φ, (ϕ+ φ)∗] = FA + [ϕ, ϕ∗] + dA(a− a∗) + [φ, ϕ∗] + [ϕ, φ∗] + (higher order terms)

Therefore the slice equations imply that the linearisation of the curvature vanishes in the direction of a.
Substituting this into the gradient flow equations and using the fact that (∂̄A, ϕ) is a critical point gives us

∂a

∂t
= i[a, ∗(FA + [ϕ, ϕ∗])] + i∂̄A ∗ (dA(a− a∗) + [ϕ, φ∗] + [φ, ϕ∗]) + (higher order terms)

∂φ

∂t
= i[φ, ∗(FA + [ϕ, ϕ∗])] + i [ϕ, (dA(a− a∗) + [ϕ, φ∗] + [φ, ϕ∗])] + (higher order terms)

Therefore at a point in the slice, the linear component of the gradient flow equations is given by L(a, φ) =
(−i[β, a],−i[β, φ]), where β = ∗(FA+[ϕ, ϕ∗]). Note that this is the tangent vector to the curve e−iβt ·(a, φ)
at t = 0, and therefore if (a, φ) is in the negative slice then the action of −iβ has strictly positive eigenvalues
(i.e. the downwards flow increases the component in the negative slice).
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Since z− is in the negative slice then there exists λmin > 0 such that ⟨Lz−, z−⟩L2
1
≥ λmin∥z−∥2L2

1
. Now

Lemma 2.22 shows that the YMH flow preserves the set {z− = 0}, and so N−(u, z≥0, 0) = 0. Since N− is
C1 with vanishing derivative at the origin then for all ε > 0 there exists δ > 0 such that if ∥yt − x∥L2

1
< δ

then

∥N−(u, z≥0, z−)∥L2
1
≤ ε∥z−∥L2

1

Therefore
1

2

∂

∂t
∥z−∥2L2

1
= ⟨Lz−, z−⟩L2

1
+ ⟨N−(u, z≥0, z−), z−⟩L2

1
≥ (λmin − ε)∥z−∥2L2

1
,

and so if ε > 0 is small enough (e.g. ε < 1
2λmin) then there exist positive constants K1 and K2 such that

∥z−∥2L2
1
≤ K1e

K2t for all t ≤ 0. �

The next lemma shows that the difference YMH(x)−YMH(yt) is decreasing exponentially.

Lemma 2.24. Let yt = eu · (x+ z≥0+ z−) be a solution to the YMH flow such that limt→−∞ yt = x. Then
there exist positive constants K ′

1 and K ′
2 such that

YMH(x)−YMH(eu · (x+ z≥0 + z−)) ≤ K ′
1e
K′

2t

for all t ≤ 0.

Proof. Recall that the Morse-Kirwan condition from Lemma 2.22 implies

YMH(eu · (x+ z≥0))−YMH(x) ≥ 0

Since x is a critical point of YMH, then for all ε > 0 there exists δ > 0 such that if ∥yt−x∥L2
1
< δ we have

YMH(eu · (x+ z≥0 + z−))−YMH(eu · (x+ z≥0)) ≥ −ε∥z−∥L2
1
.

Therefore

YMH(eu · (x+ z≥0 + z−))−YMH(x) = YMH(eu · (x+ z≥0 + z−))−YMH(eu · (x+ z≥0))

+ YMH(eu · (x+ z≥0))−YMH(x)

≥ −ε∥z−∥L2
1
≥ −ε

√
K1e

1
2
K2t

Since YMH(eu ·(x+z≥0+z−)) is monotone decreasing with t and limt→−∞YMH(eu ·(x+z≥0+z−)) =

YMH(x), then YMH(eu · (x+ z≥0 + z−)) ≤ YMH(x), and so the above equation implies that

|YMH(yt)−YMH(x)| ≤ K ′
1e
K′

2t

for positive constants K ′
1 = ε

√
K1 and K ′

2 =
1
2K2. �

Lemma 2.25. Let yt be a solution to the YMH flow such that yt → x as t → −∞. Then for each positive
integer k there exists a constant C and a constant τ0 ∈ R such that

∥yτ − x∥L2
k
≤ C

∫ τ

−∞
∥ gradYMH(ys)∥L2 ds

for all τ ≤ τ0.
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Proof. Recall the interior estimate from [41, Lem. 7.3], [51, Prop. 3.6] which says that for all positive
integers k there exists a neighbourhood U of x in the L2

k topology and a constant C such that if yt ∈ U for
all t ∈ [0, T ] then ∫ T

1
∥ gradYMH(yt)∥L2

k
dt ≤ C

∫ T

0
∥ gradYMH(yt)∥L2 dt.

The constant C is uniform as long as the Yang-Mills-Higgs functional is uniformly bounded along yt, the
initial condition satisfies a uniform bound on the derivatives of the curvature of the underlying holomorphic
bundle with Hermitian metric and the flow line yt remains in the fixed neighbourhood U of the critical point
x (cf. [41, Prop. A]). In particular, the estimates of [51, Lem. 3.14, Cor 3.16] show that this bound on the
curvature is satisfied for any initial condition along a given flow line yt. A priori the constant depends on T ,
however it can be made uniform in T using the following argument. Let C be the constant for T = 2. For
any T ≥ 2, let N be an integer greater than T such that yt ∈ U for all t ∈ [0, N ]. We then have∫ T

1
∥ gradYMH(yt)∥L2

k
dt ≤

N−1∑
n=1

∫ n+1

n
∥ gradYMH(yt)∥L2

k
dt

≤ C

N−1∑
n=1

∫ n+1

n−1
∥ gradYMH(yt)∥L2 dt

≤ 2C

∫ N

0
∥ gradYMH(yt)∥L2 dt

Since limt→−∞ yt = x in the C∞ topology, then for any ε > 0 there exists τ0 such that τ ≤ τ0 implies that
∥yt − x∥L2

k
< ε for all t ≤ τ and therefore by choosing ε small we can apply the above interior estimate on

any interval [t, τ ] for τ ≤ τ0. Therefore we have the bound∫ τ

t
∥ gradYMH(ys)∥L2

k
ds ≤ 2C

∫ τ

−∞
∥ gradYMH(ys)∥L2 ds

For fixed τ the right-hand side of the above inequality is constant, and so

∥yτ − x∥L2
k
≤
∫ τ

−∞
∥ gradYMH(ys)∥L2

k
ds ≤ 2C

∫ τ

−∞
∥ gradYMH(ys)∥L2 ds

�

Proof of Proposition 2.21. After possibly shrinking the neighbourhood U from the previous lemma, we can
use the Lojasiewicz inequality (cf. [51, Prop. 3.5]) which implies that for any y ∈ U there exist constants
C > 0 and θ ∈ (0, 12 ] such that

(2.19) ∥ gradYMH(y)∥ ≥ C |YMH(x)−YMH(y)|1−θ

Along the gradient flow we have the inequality

∂

∂t
(YMH(x)−YMH(yt))

θ = −θ (YMH(x)−YMH(yt))
θ−1 ∂

∂t
YMH(yt)

= θ (YMH(x)−YMH(yt))
θ−1 ∥ gradYMH(yt)∥2

≥ Cθ∥ gradYMH(yt)∥
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where the last step follows from the Lojasiewicz inequality (2.19). Since yt → x as t → −∞, then
integrating the above inequality from −∞ to τ gives us

(YMH(x)−YMH(yτ ))
θ ≥ Cθ

∫ τ

−∞
∥ gradYMH(yt)∥ dt,

which is equivalent to ∫ τ

−∞
∥ gradYMH(yt)∥ dt ≤

1

Cθ
(YMH(x)−YMH(yτ ))

θ .

Lemma 2.24 shows that

(YMH(x)−YMH(yτ ))
θ ≤ (K ′

1)
θeθK

′
2t

for all t ≤ 0. These two estimates together with the result of Lemma 2.25 show that

∥yt − x∥L2
k
≤ C1e

ηt

for some positive constants C1, η and all t ≤ 0. �

3. THE ISOMORPHISM CLASSES IN THE UNSTABLE SET

Given a critical point x ∈ B, in this section we show that for each y ∈ S−
x there exists a smooth gauge

transformation g ∈ GC such that g · y ∈ W−
x (Proposition 3.14), and conversely for each y ∈ W−

x there
exists g ∈ GC such that g · y ∈ S−

x (Proposition 3.18). As a consequence, the isomorphism classes in the
unstable set are in bijective correspondence with the isomorphism classes in the negative slice, and so we
have a complete description of these isomorphism classes by Lemma 2.10. This leads to Theorem 3.19
which gives an algebraic criterion for two points to be connected by a flow line.

3.1. Convergence of the scattering construction. The goal of this section is to prove Proposition 3.14,
which shows that every point in the negative slice S−

x is complex gauge equivalent to a point in the unstable
set W−

x .
The construction involves flowing up towards the critical point on the slice using the linearisation of the

YMH flow and then flowing down using the YMH flow. A similar idea is used by Hubbard in [19] for
analytic flows around a critical point in Cn, where the flow on the slice is defined by projecting the flow
from the ambient space. Hubbard’s construction uses the fact that the ambient space is a manifold to (a)
define this projection to the negative slice, and (b) define local coordinates in which the nonlinear part of
the gradient flow satisfies certain estimates in terms of the eigenvalues for the linearised flow [19, Prop. 4],
which is necessary to prove convergence. This idea originated in the study of the existence of scattering
states in classical and quantum mechanics. In the context of this paper, one can think of the linearised flow
and the YMH flow as two dynamical systems and the goal is to compare their behaviour as t → −∞ (see
[42, Ch. XI.1] for an overview). As noted in [19], [40] and [42], the eigenvalues of the linearised flow play
an important role in comparing the two flows.

The method of this section circumvents the need for a local manifold structure by defining the flow on
the slice using the linearised flow and then using the distance-decreasing property of the flow on the space
of metrics from [8], [45] (cf. Lemma 2.18) in place of the estimate of [19, Prop. 4] on the nonlinear
part of the flow. The entire construction is done in terms of the complex gauge group, and so it is valid
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on any subset preserved by GC, thus avoiding any problems associated with the singularities in the space
of Higgs bundles. Moreover, using this method it follows naturally from the Lojasiewicz inequality and
the smoothing properties of the heat equation that the backwards YMH flow with initial condition in the
unstable set converges in the C∞ topology.

3.1.1. A C0 bound on the metric. First we derive an a priori estimate on the change of metric along the
flow. Fix an initial condition y0 ∈ S−

x and let β = µ(x) = Λ(FA + [ϕ, ϕ∗]) ∈ Ω0(ad(E)) ∼= Lie(G). In
this section we also use the function µh(y) = Adg−1 (µ(g · y)) from (2.15). The linearised flow with initial
condition y0 has the form e−iβt · y0, and the YMH flow (2.3) has the form gt · y0. Let ft = gt · eiβt and
define ht = f∗t ft ∈ GC/G. This is summarised in the diagram below.

b

b

b
b

x

y0

e−iβt
· y0

gt · y0 = ft · e
−iβt

· y0

S−

x

ft

gt
e−iβt

FIGURE 1. Comparison of the gradient flow and the linearised flow.

Lemma 3.1. For any initial condition y0 ∈ S−
x , the induced flow on GC/G satisfies

dht
dt

= −2iht µh(e
−iβt · y0) + iβht + ht(iβ)

Proof. First compute

(3.1)
dft
dt
f−1
t =

dgt
dt
g−1
t + gt(iβ)e

iβtf−1
t = −iµ(gt · y0) + ft(iβ)f

−1
t .

Then
dht
dt

=
df∗t
dt
ft + f∗t

dft
dt

= f∗t

(
dft
dt
f−1
t

)∗
ft + f∗t

(
dft
dt
f−1
t

)
ft

= −f∗t iµ(gt · y0)ft + iβht − f∗t iµ(gt · y0)ft + ht(iβ)

= −2f∗t iµ(gt · y0)ft + iβht + ht(iβ)

= −2ihtAdf−1
t

(µ(gt · y0)) + iβht + ht(iβ)

= −2iht µh(e
−iβt · y0) + iβht + ht(iβ)

where the last step follows from the definition of µh in (2.15) and the fact that e−iβt = f−1
t · gt. �

The next estimate gives a bound for supX σ(ht) in terms of ∥y0 − x∥C0 .
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Lemma 3.2. For every ε > 0 there exists a constant C > 0 such that for any initial condition y0 ∈ S−
x with

∥e−iβT · y0 − x∥C0 < ε we have the estimate supX σ(ht) ≤ C∥e−iβT · y0 − x∥2C0 for all 0 ≤ t ≤ T .

Proof. Taking the trace of the result of Lemma 3.1 gives us

d

dt
Trht = Tr

(
dh

dt

)
= −2iTr

(
(µh(e

−iβt · y0)− β)ht

)
d

dt
Trh−1

t = −Tr

(
h−1
t

dh

dt
h−1
t

)
= 2iTr

(
h−1
t (µh(e

−iβt · y0)− β)
)

Therefore
d

dt
Tr(ht) = −2iTr

(
(µh(e

−iβt · y0)− µ(e−iβt · y0))ht
)
− 2iTr

(
(µ(e−iβt · y0)− β)ht

)
Lemma 2.20 together with the fact that ht is positive definite then shows that(

∂

∂t
+∆

)
Tr(ht) ≤ −2iTr

(
(µ(e−iβt · y0)− β)ht

)
≤ C1∥µ(e−iβt · y0)− β∥C0 Tr(ht)

≤ C1∥e−iβt · y0 − x∥2C0 Tr(ht) (by Lemma 2.17)

A similar calculation shows that(
∂

∂t
+∆

)
Tr(h−1

t ) ≤ C1∥e−iβt · y0 − x∥2C0 Tr(h
−1
t )

If we label the eigenvalues of iβ as λ1 ≤ · · · ≤ λk < 0 ≤ λk+1 ≤ · · · ≤ λn, then the estimate
∥eiβs · (y0 − x)∥2C0 ≤ e2λks∥y0 − x∥2C0 from (2.14) gives us

(
∂

∂t
+∆

)
σ(ht) =

(
∂

∂t
+∆

)(
Tr(ht) + Tr(h−1

t )
)

≤ C1∥e−iβt · (y0 − x)∥2C0

(
Tr(ht) + Tr(h−1

t )
)

= C1∥eiβ(T−t) · e−iβT · (y0 − x)∥2C0

(
Tr(ht) + Tr(h−1

t )
)

≤ C1e
2λk(T−t)∥e−iβT · (y0 − x)∥2C0σ(ht) + C1e

2λk(T−t)∥e−iβT · (y0 − x)∥2C0 rank(E)

(3.2)

Let K1 = C1∥e−iβT · y0 − x∥2C0 and K2 = C1∥e−iβT · y0 − x∥2C0 rank(E). Define

νt = σ(ht) exp

(
K1

2λk
e2λk(T−t)

)
−
∫ t

0
K2e

2λk(T−s) exp

(
K1

2λk
e2λk(T−s)

)
ds

Note that ν0 = 0 since h0 = id. A calculation using (3.2) then shows that(
∂

∂t
+∆

)
νt ≤ 0

and so supX νt ≤ supX ν0 = 0 by the maximum principle. Therefore

sup
X
σ(ht) ≤ exp

(
−K1

2λk
e2λk(T−t)

)∫ t

0
K2e

2λk(T−s) exp

(
K1

2λk
e2λk(T−s)

)
ds

≤ exp

(
−K1

2λk

)∫ t

0
K2e

2λk(T−s) ds ≤ C∥e−iβT · y0 − x∥2C0
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for some constant C, since λk < 0, 0 ≤ s ≤ t < T , K1 is bounded since ∥e−iβT · y0 − x∥C0 < ε by
assumption and K2 is proportional to ∥e−iβT · y0 − x∥2C0 . �

3.1.2. C∞ convergence in the space of metrics. Now consider the case of a fixed y0 ∈ S−
x and define

yt = eiβt · y0. Given any y ∈ S−
x , define gs(y) ∈ GC to be the unique solution of (2.3) such that gs(y) · y is

the solution to the YMH flow at at time s with initial condition y, define fs(y) = gs(e
iβs · y) · eiβs ∈ GC,

and define hs(y) = fs(y)
∗fs(y) to be the associated change of metric. For any nonnegative s, t, we can use

the result of the previous lemma with y0 and T replaced by eiβs · yt and s respectively to obtain

(3.3) sup
X
σ(hs(yt)) ≤ C∥yt − x∥2C0 = C∥eiβt · (y0 − x)∥2C0 ≤ Ce2λkt∥y0 − x∥2C0 .

As a special case, given t1 > t2 ≥ 0, setting t = t2 and s = t1 − t2 in the above estimate gives us

(3.4) sup
X
σ(ht1−t2(yt2)) ≤ C∥yt2 − x∥2C0 .

This is summarised in the diagram below.

b

b

b

b

b b

b

x

yt1 = eiβt1
· y0

y0

yt2 = eiβt2
· y0

gt1(yt1) · yt1 = ft1(y0) · y0

gt2(yt2) · yt2 = ft2(y0) · y0

gt1−t2(yt1) · yt1 = ft1−t2(yt2) · yt2

S−

x

FIGURE 2. Comparison of ft1(y0) · y0 and ft2(y0) · y0.

In the above notation, ht(y0) = ft(y0)
∗ft(y0) is the change of metric associated to the gauge transfor-

mation ft(y0) in the above diagram.

Proposition 3.3. ht(y0)
C0

−→ h∞(y0) ∈ GC/G as t → ∞. The limit depends continuously on the initial
condition y0. The rate of convergence is given by

(3.5) sup
X
σ(ht(y0)(h∞(y0))

−1) ≤ C2e
2λkt∥y0 − x∥2C0

where C2 > 0 is a constant depending only on the orbit G · x.

Proof. Let t1 > t2 ≥ T . The estimate (3.4) shows that

sup
X
σ(ht1−t2(yt2)) ≤ C∥yt2 − x∥2C0 ≤ Ce2λkt2∥y0 − x∥2C0 ≤ Ce2λkT ∥y0 − x∥2C0 .
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Recall from (2.17) that

σ(ht1(y0)ht2(y0)
−1) = σ

(
(ft1(y0)ft2(y0)

−1)∗ft1(y0)ft2(y0)
−1
)
.

The distance-decreasing formula of Lemma 2.18 shows that

sup
X
σ
(
(ft1(y0)ft2(y0)

−1)∗ft1(y0)ft2(y0)
−1
)
≤ sup

X
σ(ht1−t2(yt2)).

Therefore the distance (measured by σ) between the two metrics ht1(y0) and ht2(y0) satisfies the following
bound

sup
X
σ(ht1(y0)ht2(y0)

−1) = sup
X
σ
(
(ft1(y0)ft2(y0)

−1)∗ft1(y0)ft2(y0)
−1
)

≤ sup
X
σ(ht1−t2(yt2)) ≤ C2e

2λkT ∥y0 − x∥2C0

and so ht(y0) is a Cauchy sequence in C0 with a unique limit h∞ ∈ GC/G, The above equation shows that
the rate of convergence is given by (3.5).

Since the finite-time Yang-Mills-Higgs flow and linearised flow both depend continuously on the initial
condition, then ht(y0) depends continuously on y0 for each t > 0. Continuous dependence of the limit then
follows from the estimate (3.5). �

Now we can improve on the previous estimates to show that ht(y0) converges in the smooth topology
along a subsequence, and therefore the limit h∞ is C∞. Define zt = ft(y0) · y0, where y0 ∈ S−

x and
ft(y0) ∈ GC are as defined in the previous proposition. Given a Higgs bundle zt = (∂̄A, ϕ), let ∇A denote
the covariant derivative with respect to the metric connection associated to ∂̄A.

Lemma 3.4. For each initial condition y0 ∈ S−
x , there is a uniform bound on supX |∇ℓ

Aµ(zt)| and
supX |∇ℓ

Aϕ| for each ℓ ≥ 0.

Proof. Since {eiβt · y0 : t ∈ [0,∞]} is a compact curve in the space of C∞ Higgs bundles connecting two
C∞ Higgs bundles y0 and x, then supX

∣∣µ(eiβt · y0)∣∣ and supX |∇Aϕ| are both uniformly bounded along
the sequence eiβt · y0. By construction, zt is the time t YMH flow with initial condition eiβt · y0. Along
the YMH flow, for each ℓ the quantities supX

∣∣∇ℓ
Aµ
∣∣ and supX

∣∣∇ℓ
Aϕ
∣∣ are both uniformly bounded by a

constant depending on the value of supX |µ| and supX |∇Aϕ| at the initial condition (cf. [51, Sec. 3.2]).
Since these quantities are uniformly bounded for the initial conditions, then the result follows. �

Corollary 3.5. There is a subsequence tn such that htn → h∞ in the C∞ topology. Therefore h∞ is C∞.

Proof. Since zt is contained in the complex gauge orbit of y0 for all t, then [51, Lem. 3.14] shows that
the uniform bound on

∣∣∇ℓ
Aµ(zt)

∣∣ from the previous lemma implies a uniform bound on
∣∣∇ℓ

AFA
∣∣ for all ℓ.

Therefore, since Proposition 3.3 shows that ht converges in C0, then the estimates of [8, Lem. 19 & 20]
show that ht is bounded inCℓ for all ℓ, and so there is a subsequence htn converging in theC∞ topology. �
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3.1.3. C∞ convergence in the space of Higgs bundles. In this section we show that the scattering construc-
tion converges in the C∞ topology on the space of Higgs bundles. As a consequence of the methods, we
obtain an estimate that shows the solution to the reverse heat flow constructed in Section 3.1.4 converges to
the critical point x in the smooth topology.

This section uses a slightly modified version of the flow from the previous section, defined as follows.
Given y0 ∈ S−

x and t > 0, let xs = gs · eiβt · y0 be the time s solution to the YMH flow (2.3) with
initial condition eiβt · y0, let s(t) be the unique point in time such that YMH(xs(t)) = YMH(y0) and
define t′ = min{t, s(t)}. At a critical point, the curvature i ∗ (FA + [ϕ, ϕ∗]) takes the form of a diagonal
matrix whose entries are rational numbers with denominator bounded above by rank(E) (cf. (2.6)), and
therefore the critical values of YMH are discrete, which implies that t′ is well-defined for small values of
YMH(x)−YMH(y0). The figure below shows the two cases t′ = s(t) ≤ t and t′ = t < s(t).

b

b

b b

x

eiβt
· y0

y0 zt = gt′ · e
iβt

· y0

S−

x

gt′

Case t′ = s(t) ≤ t

eiβt

YMH−1(YMH(y0))

b

b

b

b

x

eiβt
· y0

y0

zt = gt′ · e
iβt

· y0

S−

x

gt′

Case t′ = t < s(t)

eiβt

YMH−1(YMH(y0))

Now define zt = gt′ · eiβt ·y0 and wt = eiβ(t−t
′) ·y0. Note that zt = gt′ · eiβt

′ ·wt and so the results of the
previous section show that the C0 norm of the change of metric connecting wt and zt is bounded. Therefore
Corollary 2.12 shows that wt and zt are both uniformly bounded away from x.

Lemma 3.6. There exists T > 0 such that t− t′ ≤ T for all t.

Proof. If s(t) ≥ t then t′ = t and the desired inequality holds. Therefore the only non-trivial case is
s(t) < t. Since YMH(zt) = YMH(y0) and YMH is continuous in the L2

1 norm on B, then there exists a
neighbourhood V of x such that zt /∈ V for all t. We also have zt = ft′ · wt with ft′ = gt′e

iβt′ such that
ht = f∗t′ft′ satisfies supX σ(ht) ≤ C∥wt − x∥2C0 ≤ C∥y0 − x∥2C0 by Lemma 3.2, and so Corollary 2.12
shows that there exists a neighbourhood U of x in the L2

1 topology on B such that wt /∈ U . Therefore there
exists η > 0 such that ∥wt − x∥L2

1
≥ η and ∥zt − x∥L2

1
≥ η.

Since wt = eiβ(t−t
′) · y0 and eiβs · y0 converges to x as s→ ∞, then there exists T such that t− t′ ≤ T

for all t, since otherwise ∥wt − x∥L2
1
< η for some t which contradicts the inequality from the previous

paragraph. �

Remark 3.7. Since t − T ≤ t′ ≤ s(t), then YMH(gt−T · eiβt · y0) ≥ YMH(y0) for all t. Equivalently,
YMH(gt−T · eiβ(t−T ) · (eiβT · y0)) ≥ YMH(y0). Therefore, by using the fixed initial condition eiβT · y0 we
can guarantee that the YMH functional remains greater than YMH(y0). This is used in Proposition 3.9 (see
also Remark 3.12).
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Next we use the Lojasiewicz inequality to derive a uniform bound on ∥zt−x∥L2
1
. The original Lojasiewicz

inequality for a real analytic manifold M and a critical point c ∈ M of an analytic function f : M → R
gives a neighbourhood of c on which grad f(z) is bounded below by |f(z) − f(c)|r for some r > 0 (cf.
[33]). Simon [44] extended this to an infinite-dimensional setting and used this to prove convergence of
certain nonlinear evolution equations. This was further extended by Rade [41] who proved that the Yang-
Mills flow converges when the base manifold has dimension 2 or 3. In the next lemma we use the inequality
in a different way to show that the nonlinear flow zt remains in a given neighbourhood o fthe critical point
x if the linearised flow remains in a small enough neighbourhood of x.

Lemma 3.8. Given ε > 0 there exists δ > 0 such that for each y0 ∈ S−
x with ∥y0 − x∥L2

1
< δ there exists a

neighbourhood U of x in the L2
1 topology such that ∥zt − x∥L2

1
< ε for all t such that eiβt · y0 ∈ U .

Proof. Recall from [51, Prop. 3.5] that there exists ε1 > 0 and constants C > 0 and θ ∈
(
0, 12
)

such that
the Lojasiewicz inequality

(3.6) ∥ gradYMH(z)∥L2 ≥ C |YMH(x)−YMH(z)|1−θ

holds for all z such that ∥z− x∥L2
1
< ε1. Recall the interior estimate [51, Prop. 3.6] which says that for any

positive integer k there exists ε2 > 0 and a constant C ′
k such that for any solution xs = gs · eiβt · y0 to the

YMH flow with initial condition eiβt · y0 which satisfies ∥xs − x∥L2
k
< ε2 for all 0 ≤ s ≤ S, then we have

(3.7)
∫ S

1
∥ gradYMH(xs)∥L2

k
dt ≤ C ′

k

∫ S

0
∥ gradYMH(xs)∥L2 dt.

where the constant C ′
k is uniform over all initial conditions in a given GC orbit and for all S such that

∥xs − x∥L2
k
< ε2 for all s ∈ [0, S] (cf. Lemma 2.25). Define ε′ = min{ε, ε1, ε2}. A calculation using (3.6)

(cf. [44]) shows that any flow line xs which satisfies ∥xs − x∥L2
1
< ε′ for all s ∈ [0, t′] also satisfies the

gradient estimate

Cθ∥ gradYMH(xs)∥L2 ≤ ∂

∂s
|YMH(x)−YMH(xs)|θ

and so if ∥xs − x∥L2
1
< ε′ for all s < t′ then∫ t′

0
∥ gradYMH(xs)∥L2 ds ≤

1

Cθ

(
|YMH(x)−YMH(xt′)|θ − |YMH(x)−YMH(x0)|θ

)
≤ 1

Cθ
|YMH(x)−YMH(xt′)|θ

(3.8)

Let k = 1 in (3.7) and choose δ > 0 so that ∥y0−x∥L2
1
< δ implies that that 1

Cθ |YMH(x)−YMH(y0)|θ ≤
ε′

3C′
1
, where C and θ are the constants from the Lojasiewicz inequality (3.6) and C ′

1 is the constant from (3.7)
for k = 1. Therefore, since YMH(y0) = YMH(xt′) < YMH(xτ ) ≤ YMH(x) for all τ < t′, then

(3.9)
1

Cθ
|YMH(x)−YMH(xτ )|θ ≤

ε′

3C ′
1

for all τ < t′.

Since the finite-time YMH flow depends continuously on the initial condition in the L2
1 norm by [51, Prop.

3.4], then there exists a neighbourhood U of x such that x0 ∈ U implies that ∥x1 − x∥L2
1
< 1

3ε
′. Choose t
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large so that eiβt · y0 = eiβt
′ · wt ∈ U and let xs = gs · eiβt · y0 be the solution to the YMH flow at time s

with initial condition x0 = eiβt · y0. Note that xt′ = zt. Define

τ = sup{s | ∥xr − x∥L2
1
< ε′ for all r ≤ s}

and note that τ > 0. By definition of τ , the Lojasiewicz inequality (3.6) and the interior estimate (3.8) are
valid for the flow line xs on the interval [0, τ ]. If τ < t′, then (3.8) and (3.9) imply that

∥xτ − x∥L2
1
≤ ∥x1 − x∥L2

1
+ ∥xτ − x1∥L2

1

<
1

3
ε′ +

∫ τ

1
∥ gradYMH(xs)∥L2

1
ds

≤ 1

3
ε′ + C ′

1

∫ τ

0
∥ gradYMH(xs)∥L2 ds

≤ 1

3
ε′ +

C ′
1

Cθ
|YMH(x)−YMH(xτ )|θ ≤

1

3
ε′ +

1

3
ε′

contradicting the definition of τ as the supremum. Therefore t′ ≤ τ and the same argument as above shows
that ∥xt′ − x0∥L2

1
< 2

3ε
′, so we conclude that zt = xt′ satisfies ∥zt − x∥L2

1
< 2

3ε
′ < ε for all t such that

eiβt · y0 ∈ U . �

Now that we have a uniform L2
1 bound on zt − x, then we can apply the same idea using the interior

estimate (3.7) as well as continuous dependence on the initial condition in the L2
k norm from [51, Prop. 3.4]

to prove the following uniform L2
k bound on zt − x.

Lemma 3.9. Given ε > 0 and a positive integer k there exists δ > 0 such that if ∥y0 − x∥L2
1
< δ then there

exists a neighbourhood U of x in the L2
k topology such that ∥zt− x∥L2

k
< ε for all t such that eiβt · y0 ∈ U .

Now we can prove that there is a limit z∞ in the space of C∞ Higgs bundles. In Section 3.1.4 we will
show that z∞ ∈W−

x .

Proposition 3.10. For each y0 ∈ S−
x , let zt be the sequence defined above. Then there exists z∞ ∈ B such

that for each positive integer k there exists a subsequence of zt converging to z∞ strongly in L2
k.

Proof. The previous estimate with k = 2 shows that ∥zt−x∥L2
2

is bounded. Compactness of the embedding
L2
k+1 ↩→ L2

k shows that there is a subsequence {ztn} converging strongly to a limit z∞ in L2
1.

For any k > 1, the same argument applied to the subsequence {ztn} from the previous paragraph shows
that there exists a further subsequence, which we denote by {ztnj

}, which converges strongly in L2
k. Since

ztnj

L2
1−→ z∞ then the limit in L2

k of ztnj
must be z∞ also. Therefore z∞ is a C∞ Higgs pair. �

Finally, we can prove that z∞ is gauge-equivalent to y0. Recall the constant T from Lemma 3.6 and let
φ(zt, s) denote the time s downwards YMH flow (2.4) with initial condition zt. The gauge transformation
ft(y0) ∈ GC from Proposition 3.3 satisfies ft(y0) · y0 = ϕ(zt, t− t′).

For any k, let ztn be a subsequence converging strongly to z∞ in L2
k. Such a subsequence exists by

Proposition 3.10. Since 0 ≤ tn − t′n ≤ T for all n then there exists s ∈ [0, T ] and a subsequence {tnℓ
}

such that tnℓ
− t′nℓ

→ s. Since the finite-time YMH flow depends continuously on the initial condition in
L2
k, then ftnℓ

(y0) · y0 = φ(ztnℓ
, tnℓ

− t′nℓ
) converges to z0∞ := φ(z∞, s) strongly in L2

k. After taking a
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further subsequence if necessary, the method of Section 3.1.2 shows that the change of metric associated to
ftnℓ

(y0) converges strongly in L2
k+1. Therefore, since the action of the Sobolev completion GC

L2
k+1

on BL2
k

is

continuous, then φ(z∞, s) (and hence z∞) is related to y0 by a gauge transformation in GC
L2
k+1

. Since y0 and

z∞ are both smooth Higgs pairs then an elliptic regularity argument shows that this gauge transformation is
smooth. Therefore we have proved the following result.

Proposition 3.11. Given any y0 ∈ S−
x , let z∞ be the limit from Proposition 3.10. Then there exists a smooth

gauge transformation g ∈ GC such that z∞ = g · y0.

Since z0∞ = φ(z∞, s) is related to z∞ by the finite-time flow and s is bounded, then we have the following
estimate for ∥z0∞ − x∥L2

k
. Note that this requires a bound on ∥y0 − x∥L2

1
for the estimates of this section to

work, and a bound on ∥y0 − x∥C0 for the estimates of Lemma 3.2 to work.

Corollary 3.12. For all ε > 0 there exists δ > 0 such that ∥y0 − x∥L2
1
+ ∥y0 − x∥C0 < δ implies

∥z0∞ − x∥L2
k
< ε.

Remark 3.13. The previous proof uses the fact that the finite-time flow depends continuously on the initial
condition. The limit of the downwards YMH flow as t → ∞ depends continuously on initial conditions
within the same Morse stratum (cf. [51, Thm. 3.1]). It is essential that the constant T from Lemma 3.6 is
finite (which follows from Corollary 2.12) in order to guarantee that z∞ and φ(z∞, s) are gauge equivalent.
Without a bound on T , it is possible that z∞ may be in a different Morse stratum to limt→∞ φ(zt, t− t′).

3.1.4. Constructing a convergent solution to the backwards YMH flow. In this section we show that the
limit z∞ is in the unstable set W−

x .

Proposition 3.14. For each y0 ∈ S−
x there exists g ∈ GC such that g · y0 ∈W−

x .

Proof. In what follows, fix any positive integer k. Given y0 ∈ S−
x , let z0t = ft(y0) · y0, where ft is the com-

plex gauge transformation from Proposition 3.3. Again using φ(z, s) to denote the time s downwards YMH

flow with initial condition z, Proposition 3.11 shows that there exists z0∞ := φ(z∞, s) and a subsequence
{z0tn} such that z0tn → z0∞ strongly in L2

k.
Given y0, define z0∞ as above, and now consider any s > 0. Let ys = eiβs ·y0 and define z−st = ft(ys)·ys.

By definition, z0t = φ(z−st−s, s), i.e. z0t is the downwards YMH flow for time s with initial condition
z−st−s. Applying Proposition 3.10 to the subsequence {z−stn−s} shows that there is a subsequence {z−stnj−s

}
converging in L2

k to some z−s∞ . Since the YMH flow for finite time s depends continuously on the initial
condition (cf. [51, Prop. 3.4]) then z0tnj

= φ(z−stnj−s
, s) converges to φ(z−s∞ , s). Since we already have

z0tn → z0∞, then z0∞ = φ(z−s∞ , s).
Therefore, for any s > 0 we have constructed a solution to the YMH flow on [−s, 0] connecting z0∞ and

z−s∞ . Proposition A.1 shows that this solution must be unique for each s, and so we can extend this to a
solution on the time interval (−∞, 0].

Moreover, we also have the uniform bound from Corollary 3.12 which shows that for all ε > 0 there
exists δ > 0 such that ∥z−s∞ − x∥L2

k
≤ ε for all y0 such that ∥y0 − x∥L2

1
< δ. Therefore as s → ∞, the
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sequence z−s∞ converges strongly to x in the L2
k norm for any k, and so z0∞ = g · y0 ∈ W−

x . Proposition
2.21 then shows that the convergence is exponential in each Sobolev norm. �

3.2. Convergence of the inverse process. In this section we consider the inverse procedure to that of the
previous section and prove that each point in the unstable set W−

x is gauge equivalent to a point in the
negative slice S−

x . The idea is similar to that of the previous section, except that here we use the modified
flow from Section 2.3 instead of the Yang-Mills-Higgs flow (2.4).

3.2.1. A C0 bound in the space of metrics. Given y0 ∈W−
x , let yt = gt · y0 be the solution to the modified

flow (2.11) with initial condition y0. Define ft = gt · eiβt and let ht = f∗t ft. This is summarised in the
diagram below.

b

b

b
b

x

y0

e−iβt
· y0

gt · y0

W−

x

ft

gt
e−iβt

Using a similar calculation as the previous section, we have the same expression for the change of metric
as in Lemma 3.1.

Lemma 3.15. For any initial condition y0 ∈W−
x , the induced flow on GC/G satisfies

(3.10)
dht
dt

= −2ihtµh(e
−iβt · y0) + iβht + ihtβ.

Proof. A similar calculation as in the proof of Lemma 3.1 (this time using the modified flow (2.11)) shows
that

dft
dt
f−1
t = −iµ(gt · y0) + γ(gt · y0) + ft(iβ)f

−1
t .

Then
dht
dt

= f∗t

(
df

dt
f−1
t

)∗
ft + f∗t

(
df

dt
f−1
t

)
ft

= f∗t
(
−iµ(gt · y0)− γ(gt · y0) + (f∗t )

−1(iβ)f∗t − iµ(gt · y0) + γ(gt · y0) + ft(iβ)f
−1
t

)
ft

= −2ihtf
−1
t µ(gt · y0)ft + iβht + ihtβ

= −2ihtµh(e
−iβt · y0) + iβht + ihtβ. �

Lemma 3.16. For every ε > 0 there exists a constant C > 0 such that for any initial condition y0 ∈ W−
x

with ∥e−iβT · y0 − x∥C1 + ∥gT · y0 − x∥C1 < ε we have the estimate

sup
X
σ(ht) ≤ C

(
∥e−iβT · y0 − x∥C1 + ∥gT · y0 − x∥C1

)
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for all 0 ≤ t ≤ T .

Proof. In contrast to the proof of Lemma 3.2, e−iβt · y0 is not in the slice Sx and so it satisfies the inequality
∥µ(e−iβt · y0) − β∥C0 ≤ C ′∥e−iβt · y0 − x∥C1 instead of the quadratic bound of Lemma 2.17. Using this
inequality, the same idea as in the proof of Lemma 3.2 leads to the bound(

∂

∂t
+∆

)
σ(ht) ≤ C1∥e−iβt · (y0 − x)∥C1

(
Tr(ht) + Tr(h−1

t )
)

= C1∥e−iβt · (y0 − x)∥C1σ(ht) + 2C1∥e−iβt · (y0 − x)∥C1 rank(E)

(3.11)

In general, if the heat operator is bounded for all t ≥ 0(
∂

∂t
+∆

)
f(p, t) ≤ C(t)f(p, t) +D(t), p ∈ X, t ∈ [0,∞)

for some nonnegative functions C(t) and D(t) independent of p ∈ X , then f(p, t) satisfies the bound

(3.12) f(p, t) ≤ exp

(∫ t

0
C(s) ds

)(∫ t

0
D(s) ds+ f(p, 0)

)
Therefore, since h0 = id and so σ(h0) = 0, then (3.11) implies that the problem reduces to finding a bound
for
∫ t
0 ∥e

−iβs · (y0−x)∥C1 ds. Proposition 2.21 shows that the backwards flow with initial condition in W−
x

converges exponentially to x in every Sobolev norm. Therefore there exists a neighbourhood U of x such
that if gT · y0 ∈ U then there exist positive constants C1 and η such that the following estimate holds

∥y0 − x∥C1 ≤ C1e
−ηT ∥gT · y0 − x∥C1 .

Recall the eigenbundles End(E)−, End(E)0 and End(E)+ from Section 2. The above estimate shows that
each component of y0 − x in End(E)−, End(E)0 and End(E)+ is bounded by C1e

−ηT ∥gT · y0 − x∥C1 .
Since the component of e−iβt · (y0 − x) in End(E)+ is exponentially decreasing with t then∫ T

0
∥(e−iβt · y0 − x)End(E)+∥C1dt ≤ C ′

1∥y0 − x∥C1 ≤ C1e
−ηT ∥gT · y0 − x∥C1 .

The component of e−iβt · (y0 − x) in End(E)0 is constant with respect to t, and so∫ T

0
∥(e−iβt · y0 − x)End(E)0∥C1dt ≤ C ′

2T∥y0 − x∥C1 ≤ C2Te
−ηT ∥gT · y0 − x∥C1 .

Finally, the component of e−iβt ·(y0−x) in End(E)− is exponentially increasing. In general, for any λ > 0

we have the estimate ∫ T

0
eλt dt =

1

λ

(
eλT − 1

)
≤ 1

λ
eλT

and so we have the bound∫ T

0
∥(e−iβt · y0 − x)End(E)−∥C1 ≤ C3∥e−iβT · (y0 − x)∥C1 .

Combining the estimates for the three components shows that the integral

I(t) =

∫ t

0
∥e−iβs · (y0 − x)∥C1 ds

is bounded by

I(t) ≤ C1e
−ηT ∥gT · y0 − x∥C1 + C2Te

−ηT ∥gT · y0 − x∥C1 + C3∥e−iβT · y0 − x∥C1
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The inequality (3.12) together with the assumption ∥gT · y0 − x∥C1 + ∥e−iβT · y0 − x∥C1 < ε shows that
there exists a constant C such that

sup
X
σ(ht) ≤ C

(
∥e−iβT · y0 − x∥C1 + ∥gT · y0 − x∥C1

)
�

3.2.2. Convergence in the space of Higgs bundles. In this section we use a method analogous to that of
Section 3.1.3 to show that the sequence converges in the space of Higgs bundles and that the limit is gauge
equivalent to y0. Given y0 ∈W−

x and t ∈ (−∞, 0], define s < 0 by ∥eiβs ·gt(y0) ·y0−x∥L2
k
= ∥y0−x∥L2

k
.

Note that this is well-defined for small values of ∥y0 − x∥L2
k

since Lemma 2.16 shows that gt(y0) · y0 → x

in the C∞ topology as t→ −∞ and for s < 0 the action of eiβs exponentially increases the C0 norm of the
component of gt(y0)·y0 in End(E)−. Now define t′ := max{t, s} < 0, let ft(y0) = eiβt

′ ·gt′(gt−t′(y0)·y0)
and zt := eiβt

′ · gt(y0) · y0 = ft(y0) · gt−t′(y0) · y0. Let ht = f∗t ft be the associated change of metric.

b

b

b b

x

gt(y0) · y0

zt = ft · y0 y0

W−

x

gt
eiβt′

‖y0 − x‖L2

k

= constant

Lemma 3.16 then shows that supX σ(ht) ≤ C (∥zt − x∥C1 + ∥gt−t′(y0) · y0 − x∥C1). Since either ∥zt−
x∥L2

k
= ∥y0 − x∥L2

k
(when t < t′) or gt−t′(y0) · y0 = y0 (when t′ = t), then Corollary 2.12 shows that

gt−t′(y0) · y0 and zt are both bounded away from x in the L2
k norm. As a consequence, |t− t′| is uniformly

bounded in the same way as Lemma 3.6. Therefore

(3.13) ∥eiβt · gt(y0) · y0 − x∥L2
k
= ∥eiβ(t−t′) · zt − x∥L2

k
≤ C ′∥zt − x∥L2

k
= C ′∥y0 − x∥L2

k

for some constant C ′, which implies that there is a subsequence of eiβt · gt(y0) · y0 converging strongly to a
limit z0∞ in L2

k−1. Since this is true for all k, then z0∞ is a C∞ Higgs pair.
A special case of (3.13) is

(3.14) ∥eiβt · gt(y0) · y0 − x∥C1 ≤ C∥eiβt · gt(y0) · y0 − x∥L2
k
≤ C ′∥y0 − x∥L2

k

for any k such that L2
k ↩→ C1 is an embedding.

By modifying the method of Proposition 3.3 we can now show that the change of metric converges in C0.
For t ∈ (−∞, 0], define ft(y0) = eiβt · gt(y0) and let t1 ≤ t2 ≤ T < 0. This is summarised in the diagram
below.

Proposition 3.17. ht(y0) converges in the C0 norm to a unique limit h∞(y0) ∈ GC/G as t → −∞. The
limit depends continuously on the initial condition y0 ∈W−

x . The rate of convergence is given by

(3.15) sup
X
σ(ht(y0)(h∞(y0))

−1) ≤ C2e
2ηt∥y0 − x∥L2

k
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b

b

b

b

b

b

b

x

yt1 = gt1(y0) · y0

ft1(y0) · y0 = eiβt1
· yt1

eiβ(t1−t2)
· yt1

y0

ft2(y0) · y0 = eiβt2
· yt2

yt2 = gt2(y0) · y0

W−

x

where C2 > 0 is a constant depending only on the orbit G · x, the constant η is from Proposition 2.21 and k
is a positive integer chosen so that L2

k ↩→ C1 is a continuous embedding.

Proof. The result follows from the same procedure as the proof of Proposition 3.3, except now we use the
estimate from Lemma 3.16 instead of the estimate from Lemma 3.2 and the distance-decreasing formula for
the modified flow from Lemma 2.19.

Let t1 < t2 ≤ T < 0, and let ht1−t2(yt2) be the change of metric connecting yt2 = gt2(y0) · y0 and
eiβ(t1−t2) · yt1 . Lemma 3.16 and the estimate (3.14) above show that ht1−t2(yt2) satisfies

sup
X
σ(ht1−t2(yt2)) ≤ C

(
∥eiβ(t1−t2) · yt1 − x∥C1 + ∥yt2 − x∥C1

)
≤ CC ′∥yt2 − x∥L2

k
+ C∥yt2 − x∥C1

≤ C ′′∥yT − x∥L2
k
≤ C2e

2ηT ∥y0 − x∥L2
k

By the construction of the modified flow, the gauge transformation connecting yt2 and eiβ(t1−t2) · yt1 is in
GC
∗ , The distance-decreasing formula for the action of eiβ(t1−t2) from Lemma 2.19 then implies that

σ(ht1(y0)ht2(y0)
−1) ≤ σ(ht1−t2(yt2))

and so the sequence ht(y0) is Cauchy in the C0 norm, by the same proof as Proposition 3.3. �

Therefore y0 is connected to z0∞ by a C0 gauge transformation. Elliptic regularity together with the fact
that z0∞ is a C∞ Higgs pair then shows that y0 is gauge equivalent to z0∞ by a C∞ gauge transformation.

The same method as the proof of Proposition 3.14 then allows us to explicitly construct a solution of the
linearised flow z−s∞ = eiβs ·z0∞ converging to x as s→ +∞. More precisely, for t < 0 define yt = gt(y0)·y0
and z0t = eiβt · yt (recall that t < 0 is used for the upwards flow). Then (3.13) shows that there exists a
subsequence {tn} such that z0tn → z0∞ strongly in L2

k−1. Given any t < −s < 0, define y−s = g−s(y0) · y0
and z−st+s := eiβ(t+s) · gt+s(y−s) · y−s = eiβ(t+s) · yt, and note that z0tn = e−iβs · z−stn+s.

Then for each s there exists a further subsequence {tnℓ
} such that z−stnℓ+s

→ z−s∞ strongly in L2
k−1. Since

z−stnℓ+s
= eiβs · z0tnℓ

, z0tnℓ
→ z0∞ and z−stnℓ

+s → z−s∞ then the continuity of the action of eiβs implies that
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b

b

b

b

b

b

x

yt = gt(y0) · y0

z
0

t = e
iβt

· yt = e
−iβs

· z
−s
t+s

z
−s
t+s = e

iβ(t+s)
· yt

y0

y
−s = g

−s(y0) · y0

W−

x

z−s∞ = eiβs · z0∞. Replacing y0 by y−s in the estimate (3.13) shows that z−s∞ → x as s → ∞. Lemma 2.10
then shows that z0∞ is GC equivalent to a point in S−

x , which is smooth by Lemma 2.7.
Therefore y0 is GC equivalent to a point in S−

x , and so we have proved the following converse to Propo-
sition 3.14.

Proposition 3.18. For each y0 ∈W−
x there exists aC∞ gauge transformation g ∈ GC such that g ·y0 ∈ S−

x .

3.3. An algebraic criterion for the existence of flow lines. The results of the previous two sections com-
bine to give the following theorem.

Theorem 3.19. Let E be a complex vector bundle over a compact Riemann surface X , and let (∂̄A, ϕ) be a
Higgs bundle on E. Suppose that E admits a filtration (E(1), ϕ(1)) ⊂ · · · ⊂ (E(n), ϕ(n)) = (E, ϕ) by Higgs
subbundles such that the quotients (Qk, ϕk) := (E(k), ϕ(k))/(E(k−1), ϕ(k−1)) are Higgs polystable and
slope(Qk) < slope(Qj) for all k < j. Then there exists g ∈ GC and a solution to the reverse Yang-Mills-
Higgs heat flow equation with initial condition g · (∂̄A, ϕ) which converges to a critical point isomorphic to
(Q1, ϕ1)⊕ · · · ⊕ (Qn, ϕn).

Conversely, if there exists a solution of the reverse heat flow from the initial condition (∂̄A, ϕ) converg-
ing to a critical point (Q1, ϕ1) ⊕ · · · ⊕ (Qn, ϕn) then (∂̄A, ϕ) admits a filtration (E(1), ϕ(1)) ⊂ · · · ⊂
(E(n), ϕ(n)) = (E, ϕ) whose graded object is isomorphic to (Q1, ϕ1)⊕ · · · ⊕ (Qn, ϕn).

Proof. Suppose first that (∂̄A, ϕ) admits a filtration (E(1), ϕ(1)) ⊂ · · · ⊂ (E(n), ϕ(n)) = (E, ϕ) by Higgs
subbundles such that the quotients (Qk, ϕk) := (E(k), ϕ(k))/(E(k−1), ϕ(k−1)) are Higgs polystable and
slope(Qk) < slope(Qj) for all k < j. Let x be a critical point isomorphic to (Q1, ϕ1)⊕· · ·⊕ (Qn, ϕn), and
let U be the neighbourhood of x from Lemma 2.10. Then by applying the isomorphism x ∼= (Q1, ϕ1)⊕· · ·⊕
(Qn, ϕn) and scaling the extension classes there exists a complex gauge transformation such that g · (∂̄A, ϕ)
is in U . Applying Lemma 2.10 shows that (∂̄A, ϕ) is isomorphic to a point in S−

x , and therefore Proposition
3.14 shows that (∂̄A, ϕ) is isomorphic to a point in W−

x .



THE REVERSE YANG-MILLS-HIGGS FLOW IN A NEIGHBOURHOOD OF A CRITICAL POINT 33

Conversely, if x = (Q1, ϕ1)⊕· · ·⊕ (Qn, ϕn) is a critical point and (∂̄A, ϕ) ∈W−
x , then Proposition 3.18

shows that there exists g ∈ GC such that g · (∂̄A, ϕ) ∈ S−
x . Therefore Lemma 2.10 shows that (∂̄A, ϕ) admits

a filtration whose graded object is isomorphic to (Q1, ϕ1)⊕ · · · ⊕ (Qn, ϕn). �

4. THE HECKE CORRESPONDENCE VIA YANG-MILLS-HIGGS FLOW LINES

Let (E, ϕ) be a polystable Higgs bundle of rank r and degree d, and let (Lu, ϕu) be a Higgs line bundle
with degLu < slopeE. Let F be a smooth complex vector bundle C∞ isomorphic to E ⊕ Lu and choose
a metric on F such that the Higgs structure on (E, ϕ) ⊕ (Lu, ϕu) is a Yang-Mills-Higgs critical point in
the space B(F ) of Higgs bundles on F . The goal of this section is to show that Hecke modifications of
the Higgs bundle (E, ϕ) correspond to Yang-Mills-Higgs flow lines in B(F ) connecting the critical point
(E, ϕ)⊕ (Lu, ϕu) to lower critical points.

In Section 4.1 we review Hecke modifications of Higgs bundles. Section 4.2 describes how the space
of Hecke modifications relates to the geometry of the negative slice and Section 4.3 contains the proof of
Theorem 4.22 which shows that Hecke modifications correspond to YMH flow lines. In Section 4.4 we give
a geometric criterion for points to be connected by unbroken flow lines in terms of the secant varieties of the
space of Hecke modifications inside the negative slice. In particular, this gives a complete classification of
the YMH flow lines for rank 2 (cf. Corollary 4.27). Throughout this section the notation E is used to denote
the sheaf of holomorphic sections of the bundle E.

4.1. Hecke modifications of Higgs bundles. The purpose of this section is to derive some basic results for
Hecke modifications of Higgs bundles which will be used in Section 4.3 to prove Theorem 4.22. In Section
4.4 we extend these results to study unbroken YMH flow lines. The Hecke correspondence was introduced
by Narasimhan and Ramanan [36], who applied it to study automorphisms of the moduli space of stable
bundles [37] and desingularisations of this space [38]. One important aspect of the Hecke correspondence is
its role in the Geometric Langlands program (cf. [10] and [31]; an excellent survey is [14]). It also appears
in the physics approach to Geometric Langlands [25] which has been further explained in [52].

First recall that a Hecke modification of a holomorphic bundleE over a Riemann surfaceX is determined
by points p1, . . . , pn ∈ X (not necessarily distinct) and nonzero elements vj ∈ E∗

pj for j = 1, . . . , n. This
data determines a sheaf homomorphism E → ⊕n

j=1Cpj to the skyscraper sheaf supported at p1, . . . , pn with
kernel a locally free sheaf E′. This determines a holomorphic bundle E′ → X which we call the Hecke
modification of E determined by v = (v1, . . . , vn).

0 → E′ → E
v−→

n⊕
j=1

Cpj → 0

Since the kernel sheaf E′ only depends on the equivalence class of each vj in PE∗
pj then from now on we

abuse the notation slightly and also use vj ∈ PE∗
pj to denote the equivalence class of vj ∈ E∗

pj .
As explained in [52, Sec. 4.5], if (E, ϕ) is a Higgs bundle, then a Hecke modification of (E, ϕ) may in-

troduce poles into the Higgs field and so there are restrictions on the allowable modifications which preserve
holomorphicity of the Higgs field.
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Definition 4.1. Let (E, ϕ) be a Higgs bundle. A Hecke modification E′ of E is compatible with ϕ if the
induced Higgs field on E′ is holomorphic.

The next result describes a basic condition for the modification to be compatible with the Higgs field.

Lemma 4.2. Let (E, ϕ) be a Higgs bundle, and 0 → E′ → E
v−→ Cp → 0 a Hecke modification of E

induced by v ∈ E∗
p . Then the induced Higgs field ϕ′ on E′ is holomorphic if and only if there exists an

eigenvalue µ of ϕ(p) such that the composition E⊗K−1 ϕ−µ·id−−−→ E
v→ Cp is zero.

Proof. Let ϕ ∈ H0(End(E)⊗K). Then ϕ pulls back to a holomorphic Higgs field ϕ′ ∈ H0(End(E′)⊗K)

if and only if for any open set U ⊂ X and any section s ∈ E(U), the condition s ∈ ker(E(U)
v→ Cp(U))

implies that ϕ(s) ∈ ker((E ⊗K)(U)
v→ Cp(U)). After choosing a trivialisation of K in a neighbourhood

of p, we can decompose the Higgs field ϕ(p) on the fibre Ep as follows

(4.1) 0 // ker v //

ϕ(p)|ker v
��

Ep //

ϕ(p)

��

Cp //

µ

��

0

0 // ker v // Ep // Cp // 0

where scalar multiplication by µ is induced from the action of ϕ(p) on the quotient Cp = Ep/ ker v. There-
fore the endomorphism (ϕ(p)− µ · id) maps Ep into the subspace ker v and so v ∈ E∗

p descends to a
well-defined homomorphism v′ : coker (ϕ(p)− µ · id) → C.

Conversely, given an eigenvalue µ of ϕ(p) and an element v′ ∈ coker(ϕ(p)− µ · id)∗, one can choose a
basis of Ep and extend v′ to an element v ∈ E∗

p such that im(ϕ(p) − µ · id) ⊂ ker v. Equivalently, ϕ(p)
preserves ker v and so v ∈ E∗

p defines a Hecke modification E′ of E such that the induced Higgs field on
E′ is holomorphic. �

Corollary 4.3. Let (E, ϕ) be a Higgs bundle and let 0 → E′ → E
v→ Cp → 0 be a Hecke modification of E

induced by v ∈ PE∗
p . The following conditions are equivalent

(1) The induced Higgs field ϕ′ on E′ is holomorphic.
(2) There exists an eigenvalue µ of ϕ(p) such that v(ϕ(s)) = µv(s) for all sections s of E.
(3) There exists an eigenvalue µ of ϕ(p) such that v descends to a well-defined v′ ∈ (coker(ϕ(p)− µ ·

id))∗.

Lemma 4.4. Let (E, ϕ) be a Higgs bundle and (G,φ) a Higgs subsheaf. Then there exists a Higgs subbundle
(G′, φ′) ⊂ (E, ϕ) such that rank(G) = rank(G′) and (G,φ) is a Higgs subsheaf of (G′, φ′).

Proof. Since dimCX = 1 then a standard procedure shows that there is a holomorphic subbundle G′ ⊂ E

with rank(G) = rank(G′) and G is a subsheaf of G′, and so it only remains to show that this is a Higgs
subbundle. The reverse of the construction above shows that the Higgs field φ preserving G extends to a
meromorphic Higgs field φ′ preservingG′, and since this is the restriction of a holomorphic Higgs field ϕ on
E to the holomorphic subbundle G′, then φ′ must be holomorphic on G′. Therefore G′ is ϕ-invariant. �



THE REVERSE YANG-MILLS-HIGGS FLOW IN A NEIGHBOURHOOD OF A CRITICAL POINT 35

Definition 4.5. A Higgs bundle (E, ϕ) is (m,n)-stable (resp. (m,n)-semistable) if for every proper ϕ-
invariant holomorphic subbundle F ⊂ E we have

degF +m

rankF
<

degE − n

rankE
(resp. ≤).

If (E, ϕ) is (0, n)-semistable then any Hecke modification 0 → (E′, ϕ′) → (E, ϕ) → ⊕n
j=1Cpj → 0 is

semistable.

Definition 4.6. Then space of admissible Hecke modifications is the subset Nϕ ⊂ PE∗ corresponding to the
Hecke modifications which are compatible with the Higgs field.

Remark 4.7. (1) If ϕ = 0 then N0 = PE∗. If E is (0, 1)-stable then there is a well-defined map
PE∗ → PH1(E∗). The construction of the next section generalises this to a map Nϕ → PH1(E∗)

(cf. Remark 4.16).
(2) Note that the construction above is the reverse of that described in [52], which begins with E′ and

modifies the bundle to produce a bundle E with degE = degE′ + 1. Here we begin with E and
construct E′ via a modification 0 → E′ → E → Cp → 0 since we want to interpret the compatible
modifications in terms of the geometry of the negative slice (see Section 4.2) in order to draw a
connection with the results on gradient flow lines for the Yang-Mills-Higgs flow functional from
Section 3.3.

(3) One can also see the above construction more explicitly in local coordinates as in [52] by choosing
a local frame {s1, . . . , sn} for E in a neighbourhood U of p with local coordinate z centred at p and
for which the evaluation map E

v→ Cp satisfies v(s1) = s1(0) and v(sj) = 0 for all j = 2, . . . , n.
Then over U \{p}, the functions {1

z s1(z), s2(z) . . . , sn(z)} form a local frame forE′. Equivalently,

the transition function g =

(
1
z 0
0 id

)
maps the trivialisation for E to a trivialisation for E′ (note

that this is the inverse of the transition function from [52, Sec. 4.5.2] for the reason explained in the

previous paragraph). In this local frame field on E we write ϕ(z) =
(
A(z) B(z)
C(z) D(z)

)
. The action

on the Higgs field is then

g

(
A(z) B(z)
C(z) D(z)

)
g−1 =

(
A(z) 1

zB(z)
zC(z) D(z)

)
Therefore the induced Higgs field on E′ will have a pole at p unless B(0) = 0. The scalar A(0) in
this local picture is the same as the scalar µ from (4.1), and we see that

ϕ(p)− µ · id =

(
0 0

C(0) D(0)− µ · id

)
With respect to the basis of Ep given by the choice of local frame, v(ϕ(p)− µ · id) = 0. Moreover,
via this local frame coker(ϕ(p)−µ · id) is identified with a subspace ofEp which contains the linear
span of s1(0). Therefore we see in the local coordinate picture that v ∈ E∗

p descends to an element
of (coker(ϕ(p)− µ · id))∗.
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The next result shows that the admissible Hecke modifications have an interpretation in terms of the
spectral curve associated to the Higgs field. This extends the results of [52] to include the possibility that p
is a branch point of the spectral cover.

First recall Hitchin’s construction of the spectral curve from [16]. Let (E, ϕ) be a Higgs pair. Then there
is a projection map π : K → X and a bundle π∗E over the total space of the canonical bundle together with
a tautological section λ of π∗E. The zero set of the characteristic polynomial of π∗ϕ defines a subvariety
S inside the total space of K. The projection π restricts to a map π : S → X , where for each p ∈ X

the fibre π−1(p) consists of the eigenvalues of the Higgs field ϕ(p). As explained in [16], generically the
discriminant of the Higgs field has simple zeros and in this case S is a smooth curve called the spectral
curve. The induced projection π : S → X is then a ramified covering map with ramification divisor denoted
R ⊂ S.

The pullback of the Higgs field to the spectral curve is a bundle homomorphism π∗E → π∗(E⊗K), and
the eigenspaces correspond to ker(π∗ϕ−λ · id), where λ is the tautological section defined above. When the
discriminant of the Higgs field has simple zeros then Hitchin shows in [16] that the eigenspaces form a line
bundle N → S and that the original bundle E can be reconstructed as π∗L, where the line bundle L → S is
formed by modifying N at the ramification points 0 → N → L →

⊕
p∈RCp → 0. One can reconstruct the

Higgs field ϕ by pushing forward the endomorphism defined by the tautological section λ : L → L⊗ π∗K.

Lemma 4.8. If the discriminant of ϕ has simple zeros then an admissible Hecke modification of (E, ϕ)
corresponds to a Hecke modification of the line bundle L over the spectral curve.

Proof. Consider the pullback bundle π∗E → S. The pullback of the Higgs field induces a sheaf homomor-
phism (π∗ϕ− λ · id) : π∗E⊗ (π∗K)−1 → π∗E. As explained in [52, Sec. 2.6], when the discriminant of ϕ
has simple zeros then the cokernel of this homomorphism is the line bundle L → S such that E ∼= π∗L.

For µ ∈ S such that p = π(µ), there is an isomorphism of the stalks of the skyscraper sheaves Cp ∼=
π∗(Cµ). Then a Hecke modification L

v′→ Cµ given by nonzero v′ ∈ L∗
µ induces a Hecke modification

v = v′ ◦ q ◦ π∗ : E → Cp, defined by the commutative diagram below.

π∗E⊗ (π∗K)−1 π∗ϕ−λ·id // π∗E
q // coker(π∗ϕ− λ · id)

v′

''NN
NNN

NNN
NNN

NN
// 0

E

π∗

OO

v // Cp // 0

The definition of v implies that for any open set U ⊂ X with a trivialisation of K in a neighbourhood of p,
and all s ∈ E(U) we have

v(ϕs) = v′ ◦ q(π∗(ϕs)) = v′ ◦ q(µπ∗(s)) = µ v′ ◦ q ◦ π∗(s) = µ v(s)

and so v is compatible with the Higgs field by Corollary 4.3.
Conversely, let v ∈ E∗

p be compatible with the Higgs field ϕ. Corollary 4.3 shows that this induces a
well-defined element of coker(ϕ − µ · id)∗. Consider the endomorphisms ϕ(p) − µ · id on the fibre of E
over p ∈ X and π∗ϕ(µ)− µ · id on the fibre of π∗E over µ ∈ S.
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(π∗E ⊗ π∗K−1)µ
π∗ϕ−µ·id // (π∗E)µ // coker(π∗ϕ− µ · id)µ // 0

(E ⊗K−1)p
ϕ−µ·id //

OO

Ep //

OO

coker(ϕ− µ · id)p //

OO�
�
�

0

The universal property of cokernel defines a map coker(ϕ − µ · id)p → coker(π∗ϕ − µ · id)µ. Since
the discriminant of the Higgs field has simple zeros then both fibres are one-dimensional and so this map
becomes an isomorphism. Therefore v induces a well-defined homomorphism on the fibre coker(π∗ϕ− µ ·
id)µ → C, and hence a Hecke modification of L at µ ∈ S. �

Remark 4.9. When p ∈ X is not a branch point of π : S → X then this result is contained in [52].

Corollary 4.10. If the discriminant of ϕ has simple zeros then the space of Hecke modifications is Nϕ = S.

4.2. Secant varieties associated to the space of Hecke modifications. The purpose of this section is to
connect the geometry of the space of Hecke modifications with the geometry of the negative slice at a critical
point in order to prepare for the proof of Theorem 4.22 in the next section.

Let (E1, ϕ1) and (E2, ϕ2) be Higgs bundles and let ∂̄A denote the induced holomorphic structure on
E∗

1E2. Then there is an elliptic complex

Ω0(E∗
1E2)

L1−→ Ω0,1(E∗
1E2)⊕ Ω1,0(E∗

1E2)
L2−→ Ω1,1(E∗

1E2),

where L1(u) = (∂̄Au, ϕ2u−uϕ1) and L2(a, φ) = (∂̄Aφ+[a, ϕ]). Let H0 = kerL1, H1 = kerL∗
1∩kerL2

and H2 = kerL∗
2 denote the spaces of harmonic forms. Recall that if (E1, ϕ1) and (E2, ϕ2) are both Higgs

stable and slope(E2) < slope(E1) then H0(E∗
1E2) = 0.

Now consider the special case where (E1, ϕ1) is (0, n)-stable and (E2, ϕ2) is a Higgs line bundle. Let B
denote the space of Higgs bundles on the smooth bundle E1 ⊕E2 and choose a metric such that (E1, ϕ1)⊕
(E2, ϕ2) is a critical point of YMH : B → R. Definition 2.5 shows that H1(E∗

1E2) ∼= S−
x is the negative

slice at this critical point.
Let 0 → (E′, ϕ′) → (E1, ϕ1) → ⊕n

j=1Cpj → 0 be a Hecke modification defined by v1, . . . , vn ∈ PE∗
1 .

Applying the functor Hom(·,E2) to the short exact sequence 0 → E′ → E1 → ⊕jCpj → 0 gives us an exact
sequence of sheaves 0 → Hom(E1,E2) → Hom(E′,E2) → ⊕n

j=1C∗
pj → 0, where the final term comes

from the isomorphism Ext1(⊕jCpj ,E2) ∼= Hom(E2,⊕jCpj ⊗K)∗ ∼= ⊕jC∗
pj . Note that this depends on a

choice of trivialisations of E2 and K, however the kernel of the map Hom(E′,E2) → ⊕jCpj is independent
of these choices. This gives us the following short exact sequence of Higgs sheaves

(4.2) 0 → E∗
1E2 → (E′)∗E2 →

n⊕
j=1

C∗
pj → 0

There is an induced map Ω0((E′)∗E2) → Ω1,0((E′)∗E2) given by s 7→ ϕ2s−sϕ′. Recall from Corollary
4.3 that there exists an eigenvalue µj for ϕ1(pj) such that v(ϕ1(pj) − µj · id) = 0 for each j = 1, . . . , n.

From the above exact sequence there is an induced homomorphism Ω1,0((E′)∗E2)
ev1−→ ⊕n

j=1Cpj → 0. The
component of ev1(ϕ2s− sϕ′) in Cpj is (ϕ2(pj)−µj)s. In particular, ϕ2s− sϕ′ ∈ ker(ev1) iff ϕ2(pj) = µj

for all j = 1, . . . , n.
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Definition 4.11. Let (E1, ϕ1) be a Higgs bundle, and (E2, ϕ2) a Higgs line bundle. The space of Hecke mod-
ifications compatible with ϕ1 and ϕ2, denoted Nϕ1,ϕ2 ⊂ Nϕ1 , is the set of Hecke modifications compatible
with ϕ1 such that ev1(ϕ2s− sϕ′) = 0 for all s ∈ Ω0((E′)∗E2).

Remark 4.12. Note that if n = 1 and v ∈ PE∗
1 is a Hecke modification compatible with ϕ1, then the

requirement that v ∈ Nϕ1,ϕ2 reduces to ϕ2(p) = µ, where µ is the eigenvalue of ϕ1(p) from Corollary 4.3.
Such a ϕ2 ∈ H0(End(E2) ⊗ K) = H0(K) always exists since the canonical linear system is basepoint
free and therefore

∪
ϕ2∈H0(K)Nϕ1,ϕ2 = Nϕ1 . If n > 1 then ϕ2 with these properties may not exist for some

choices of ϕ1 ∈ H0(End(E1) ⊗ K) and v1, . . . , vn ∈ PE∗
1 (the existence of ϕ2 depends on the complex

structure of the surface X). If ϕ1 = 0, then we can choose ϕ2 = 0 and in this case Nϕ1,ϕ2 = Nϕ1 = PE∗
1

(this corresponds to the case of the Yang-Mills flow in Theorem 4.22).

Lemma 4.13. Let (E1, ϕ1) be Higgs polystable and (E2, ϕ2) be a Higgs line bundle. Let 0 → (E′, ϕ′) →
(E, ϕ) → ⊕n

j=1Cpj → 0 be a Hecke modification defined by distinct v1, . . . , vn ∈ Nϕ1,ϕ2 .
Then there is an exact sequence

(4.3) 0 → H0(E∗
1E2) → H0((E′)∗E2) → Cn → H1(E∗

1E2) → H1((E′)∗E2)

Proof. The short exact sequence (4.2) leads to the following commutative diagram of spaces of smooth
sections

0 // Ω0(E∗
1E2)

i∗ //

L1

��

Ω0((E′)∗E2)
ev0 //

L1

��

⊕n
j=1Cpj // 0

0 // Ω0,1(E∗
1E2)⊕ Ω1,0(E∗

1E2)
i∗ // Ω0,1((E′)∗E2)⊕ Ω1,0((E′)∗E2)

ev1 //
⊕n

j=1Cpj ⊕ Cpj // 0

Since ∂̄As depends on the germ of a section around a point, then there is no well-defined map
⊕n

j=1Cpj →⊕n
j=1Cpj ⊕ Cpj making the diagram commute, so the exact sequence (4.3) does not follow immediately

from the standard construction, and therefore we give an explicit construction below.
First construct a map Cn → H1(E∗

1E2) as follows. Given z ∈ Cn, choose a smooth section s′ ∈
Ω0((E′)∗E2) such that ev0(s′) = z and ev1(∂̄As′) = 0. Since ϕ2(pj) = µj , then ev1(ϕ2s′ − s′ϕ′) = 0 and
so ev1(L1s

′) = 0. Therefore (∂̄As
′, ϕ2s

′ − s′ϕ′) = i∗(a, φ) for some (a, φ) ∈ Ω0,1(E∗
1E2)⊕Ω1,0(E∗

1E2).
Let [(a, φ)] ∈ H1(E∗

1E2) denote the harmonic representative of (a, φ). Define the map Cn → H1(E∗
1E2)

by z 7→ [(a, φ)].
To see that this is well-defined independent of the choice of s′ ∈ Ω0((E′)∗E2), note that if s′′ ∈

Ω0((E′)∗E2) is another section such that ev0(s′′) = z and ev1(∂̄As′′) = 0, then ev0(s′′ − s′) = 0, and so
s′′− s′ = i∗(s) for some s ∈ Ω0(E∗

1E2). Therefore L1(s
′′− s′) = i∗L1(s) with [L1(s)] = 0 ∈ H1(E∗

1E2),
and so s′ and s′′ determine the same harmonic representative in H1(E∗

1E2).
To check exactness of (4.3) at the term Cn, note that if z = ev0(s′) for some harmonic s′ ∈ H0((E′)∗E2),

then L1(s
′) = 0 = i∗(0, 0), and so z ∈ Cn maps to 0 ∈ H1(E∗

1E2). Moreover, if z maps to 0 ∈
H1(E∗

1E2), then there exists s′ ∈ Ω0((E′)∗E2) such that L1(s
′) = i∗(a, φ) where (a, φ) ∈ Ω0,1(E∗

1E2)⊕
Ω1,0((E′)∗E2) and (a, φ) = L1(s) for some s ∈ Ω0(E∗

1E2). Therefore s′ and i∗s differ by a harmonic
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section of H0((E′)∗E2). Since ev0(i∗s) = 0 then z is the image of this harmonic section under the map
H0((E′)∗E2) → Cn.

To check exactness at H1(E∗
1E2), given z ∈ Cn construct (a, φ) as above and note that i∗(a, φ) =

L1s
′ for some s′ ∈ Ω0((E′)∗E2). Therefore i∗[(a, φ)] = 0 ∈ H1((E′)∗E2) and so the image of Cn →

H1(E∗
1E2) is contained in the kernel of H1(E∗

1E2) → H1((E′)∗E2). Now suppose that the image of
[(a, φ)] is zero in H1((E′)∗E2), i.e. i∗(a, φ) = L1s

′ for some s′ ∈ Ω0((E′)∗E2). Let z = ev0(s′). Note
that z = 0 implies that s′ = i∗s for some s ∈ Ω0(E∗

1E2), and so [(a, φ)] = 0. If z ̸= 0 then there
exists s′′ ∈ Ω0((E′)∗E2) such that ev1(L1(s

′′)) = 0 and ev0(s′′) = z. Then L1(s
′′) = i∗(a′′, φ′′) for

some (a′′, φ′′) ∈ Ω0,1(E∗
1E2) ⊕ Ω1,0(E∗

1E2). Moreover, ev0(s′′ − s′) = 0, so s′′ − s′ = i∗s for some
s ∈ Ω0(E∗

1E2). Commutativity implies that L1s = (a′′, φ′′) − (a, φ), and so the harmonic representatives
[(a, φ)] and [(a′′, φ′′)] are equal. Therefore [(a, φ)] is the image of z by the map Cn → H1(E∗

1E2), which
completes the proof of exactness at H1(E∗

1E2).
Exactness at the rest of the terms in the sequence (4.3) then follows from standard methods. �

For any stable Higgs bundle (E, ϕ) with d = degE and r = rankE, define the generalised Segre
invariant by

sk(E, ϕ) := kd− r

(
max

F⊂E,rankF=k
degF

)
.

where the maximum is taken over all ϕ-invariant holomorphic subbundles of rank k. Note that sk(E, ϕ) ≥
sk(E, 0) =: sk(E) and

1

rk
sk(E, ϕ) = min

F⊂E,rankF=k
(slope(E)− slope(F ))

Note that any Hecke modification (E′, ϕ′) ↩→ (E, ϕ) with degE − degE′ = n has Segre invariant
sk(E

′, ϕ′) ≥ sk(E, ϕ)− nk. As a special case, (E′, ϕ′) is stable if n < 1
ksk(E, ϕ) for all k = 1, . . . , r− 1.

A theorem of Lange [30, Satz 2.2] shows that a general stable holomorphic bundle E satisfies sk(E) ≥
k(r − k)(g − 1) for all k = 1, . . . , r − 1. Since there is an dense open subset of stable Higgs bundles
whose underlying holomorphic bundle is stable, then Lange’s theorem also gives the same lower bound on
the Segre invariant for a general stable Higgs bundle.

Lemma 4.14. Let 0 → (E′, ϕ′) → (E, ϕ) → ⊕n
j=1Cpj → 0 be a Hecke modification defined by distinct

points v1, . . . , vn ∈ PE∗ such that n < 1
ksk(E, ϕ) for all k = 1, . . . , r−1. Then slope(G) < slope(E′) for

any proper non-zero Higgs subbundle (G,ϕG) ⊂ (E, ϕ). In particular, this condition is satisfied if (E, ϕ)
is a general stable Higgs bundle and n < g − 1.

Proof. Let k = rankG and h = degG. Then the lower bound on the Segre invariant implies that

slope(E′)− slope(G) =
d− n

r
− h

k
=

1

rk
(kd− kn− rh)

≥ 1

rk
(sk(E, ϕ)− kn)

Therefore if n < 1
ksk(E, ϕ) then slope(E′)−slope(G) > 0 for any Higgs subbundle of rank k. If n < g−1

then [30, Satz 2.2] shows that this condition is satisfied for general stable Higgs bundles. �
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Corollary 4.15. Let (E1, ϕ1) be a stable Higgs bundle, let n < 1
ksk(E1, ϕ1) for all k = 1, . . . , rank(E1)−1

and let (E2, ϕ2) be a Higgs line bundle such that degE2 <
degE1−n
rankE1

. Then given any set of n distinct points
{v1, . . . , vn} ⊂ Nϕ1,ϕ2 there is a well-defined n-dimensional subspace ker(H1(E∗

1E2) → H1((E′)∗E2)).

Proof. Let (E′, ϕ′) be the Hecke modification of (E1, ϕ1) determined by {v1, . . . vn} ⊂ PE∗
1 . The lower

bound on the Segre invariant implies that (E′, ϕ′) is Higgs stable, and therefore H0((E′)∗E2) = 0 since
slope(E2) < slope(E′) = degE1−n

rankE1
. The exact sequence (4.3) then reduces to

0 → Cn → H1(E∗
1E2) → H1((E′)∗E2)

and so ker(H1(E∗
1E2) → H1((E′)∗E2)) is a well-defined n-dimensional subspace of H1(E∗

1E2) associ-
ated to {v1, . . . , vn}. �

Remark 4.16. As noted above, the maps Cn → H1(E∗
1E2) depend on choosing trivialisations, but different

choices lead to the same map up to a change of basis of Cn, and so the subspace ker(H1((E′)∗E2) →
H1(E∗

1E2)) is independent of these choices.
In the special case where n = 1, then this construction gives a well-defined map Nϕ1,ϕ2 → PH1(E∗

1E2).
When n < 1

ksk(E1, ϕ1) for all k, then Corollary 4.15 shows that any n distinct points v1, . . . , vn span a
nondegenerate copy of Pn−1 in PH1(E∗

1E2).
In the special case where ϕ1 = ϕ2 = 0 and E2 is trivial, then Nϕ1,ϕ2 = PE∗ and H1(E∗

1)
∼= H0,1(E∗

1)⊕
H1,0(E∗

1). Then the map PE∗ → H1(E∗
1) → H0,1(E∗

1)
∼= H0(E1 ⊗ K)∗ is the usual map defined for

holomorphic bundles (cf. [21, p804]).

Definition 4.17. The nth secant variety, denoted Secn(Nϕ1,ϕ2) ⊂ PH1(E∗
1E2), is the union of the sub-

spaces span{v1, . . . , vn} ⊂ PH1(E∗
1E2) taken over all n-tuples of distinct points v1, . . . , vn ∈ Nϕ1,ϕ2 .

The next lemma is a Higgs bundle version of [35, Lemma 3.1]. Since the proof is similar to that in [35]
then it is omitted.

Lemma 4.18. Let 0 → (E2, ϕ2) → (F, ϕ̃) → (E1, ϕ1) → 0 be an extension of Higgs bundles defined
by the extension class [(a, φ)] ∈ H1(E∗

1E2). Let (E′, ϕ′)
i−→ (E1, ϕ1) be a Higgs subsheaf such that

i∗[(a, φ)] = 0 ∈ H1((E′)∗E2). Then (E′, ϕ′) is a Higgs subsheaf of (F, ϕ̃).

(E′, ϕ′)

i
��zzu u u u u

0 // (E2, ϕ2) // (F, ϕ̃) // (E1, ϕ1) // 0

Corollary 4.19. Let (E1, ϕ1) be stable, let n < 1
ksk(E1, ϕ1) for all k = 1, . . . , rank(E1)−1, let (E2, ϕ2) be

a Higgs line bundle and suppose that degE2 <
degE1−n
rankE1

. Let 0 → (E2, ϕ2) → (F, ϕ̃) → (E1, ϕ1) → 0 be

an extension of Higgs bundles with extension class [(a, φ)] ∈ H1(E∗
1E2). Let 0 → (E′, ϕ′)

i
↩→ (E1, ϕ1) →

⊕n
j=1Cpj → 0 be a Hecke modification determined by distinct points {v1, . . . , vn} ∈ Nϕ1,ϕ2 .
Then (E′, ϕ′) is a subsheaf of (F, ϕ̃) if [(a, φ)] ∈ span{v1, . . . , vn} ⊂ H1(E∗

1E2).
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Proof. If [(a, φ)] ∈ span{v1, . . . , vn} then [(a, φ)] ∈ ker(H1(E∗
1E2) → H1((E′)∗E2)) by Corollary 4.15,

and therefore (E′, ϕ′) is a subsheaf of (F, ϕ̃) by Lemma 4.18. �

The next lemma gives a condition on the extension class [(a, φ)] ∈ H1(E∗
1E2) for (E′, ϕ′) to be the

subsheaf of largest degree which lifts to a subsheaf of (F, ϕ̃). This is used to study unbroken flow lines in
Section 4.4.

Lemma 4.20. Let (E1, ϕ1) be a stable Higgs bundle, choose n such that 2n − 1 < 1
ksk(E1, ϕ1) for all

k = 1, . . . , rank(E1), let (E2, ϕ2) be a Higgs line bundle and suppose that degE2 <
degE1−(2n−1)

rankE1
. Let

0 → (E2, ϕ2) → (F, ϕ̃) → (E1, ϕ1) → 0 be an extension of Higgs bundles with extension class [(a, φ)] ∈
Secn(Nϕ1,ϕ2) \ Secn−1(Nϕ1,ϕ2) ⊂ PH1(E∗

1E2) and let 0 → (E′, ϕ′)
i
↩→ (E1, ϕ1) → ⊕n

j=1Cpj → 0 be a
Hecke modification determined by distinct points v1, . . . , vn ∈ Nϕ1,ϕ2 such that i∗[(a, φ)] = 0.

Let (E′′, ϕ′′)
i′′
↩→ (E, ϕ) be a subsheaf such that (i′′)∗[(a, φ)] = 0 ∈ H1((E′′)∗E2) and rankE′′ =

rankE. Then deg(E′′) ≤ deg(E′).

Proof. Let {v′′1 , . . . , v′′m} ⊂ Nϕ1,ϕ2 be the set of distinct points defining the Hecke modification (E′′, ϕ′′)
i′′
↩→

(E1, ϕ1). Then i∗[(a, φ)] = 0 and (i′′)∗[(a, φ)] = 0 together imply that [(a, φ)] ∈ span{v1, . . . , vn} ∩
span{v′′1 , . . . , v′′m}. Either m + n > 2n − 1 (and so degE′′ ≤ degE′) or m + n ≤ 2n − 1 in which case
Corollary 4.15 together with the lower bound 2n − 1 < 1

ksk(E1, ϕ1) implies that span{v1, . . . , vn} ∩
span{v′′1 , . . . , v′′m} is the linear span of {v1, . . . , vn} ∩ {v′′1 , . . . , v′′m}. Since m + n ≤ 2n − 1 then
{v1, . . . , vn} ∩ {v′′1 , . . . , v′′m} is a strict subset of {v1, . . . , vn}, which is not possible since [(a, φ)] /∈
Secn−1(Nϕ1,ϕ2). Therefore degE′′ ≤ degE′. �

4.3. Constructing Hecke modifications of Higgs bundles via the Yang-Mills-Higgs flow. Let (E, ϕ) be
a stable Higgs bundle and Lu a line bundle with degLu <

degE−1
rankE , and let E′ be a Hecke modification of

E which is compatible with the Higgs field

0 → (E′, ϕ′)
i
↩→ (E, ϕ)

v→ Cp → 0.

The goal of this section is to construct critical points xu = (Lu, ϕu)⊕(E, ϕ) and xℓ = (Lℓ, ϕℓ)⊕(E′, ϕ′)

together with a broken flow line connecting xu and xℓ. The result of Theorem 3.19 shows that this amounts
to constructing a Higgs field ϕu ∈ H0(K), a Higgs pair (F, ϕ̃) in the unstable set of xu and a complex
gauge transformation g ∈ GC such that (E′, ϕ′) is a Higgs subbundle of g · (F, ϕ̃).

Lemma 4.21. Let 0 → (E′, ϕ′) → (E, ϕ)
v→ Cp → 0 be a Hecke modification such that (E, ϕ) and (E′, ϕ′)

are both Higgs semistable, and let Lu be a line bundle with degLu < slope(E′) < slope(E). Then there
exists a Higgs field ϕu ∈ H0(K) and a non-trivial Higgs extension (F, ϕ̃) of (Lu, ϕu) by (E, ϕ) such that
(E′, ϕ′) is a Higgs subsheaf of (F, ϕ̃).

Proof. By Remark 4.12, there exists ϕu ∈ H0(K) such that v ∈ Nϕ,ϕu . Since (E′, ϕ′) is semistable
with slope(E′) > slope(Lu) then H0((E′)∗Lu) = 0 and so the exact sequence (4.3) shows that the
Hecke modification v ∈ PE∗ determines a one-dimensional subspace of H1(E∗Lu), and that any non-
trivial extension class in this subspace is in the kernel of the map H1(E∗Lu) → H1((E′)∗Lu). Let
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0 → (Lu, ϕu) → (F, ϕ̃) → (E, ϕ) → 0 be such an extension. Then Lemma 4.18 shows that (E′, ϕ′)

is a Higgs subsheaf of (F, ϕ̃). �

We can now use this result to relate Hecke modifications at a single point with YMH flow lines.

Theorem 4.22. (1) Let 0 → (E′, ϕ′) → (E, ϕ)
v→ Cp → 0 be a Hecke modification such that (E, ϕ)

is stable and (E′, ϕ′) is semistable, and let Lu be a line bundle with degLu + 1 < slope(E′) <

slope(E). Then there exist sections ϕu, ϕℓ ∈ H0(K), a line bundle Lℓ with degLℓ = degLu + 1

and a metric on E ⊕ Lu such that xu = (E, ϕ) ⊕ (Lu, ϕu) and xℓ = (E′
gr, ϕ

′
gr) ⊕ (Lℓ, ϕℓ) are

critical points connected by a YMH flow line, where (E′
gr, ϕ

′
gr) is isomorphic to the graded object

of the Seshadri filtration of (E′, ϕ′).
(2) Let xu = (E, ϕ) ⊕ (Lu, ϕu) and xℓ = (E′, ϕ′) ⊕ (Lℓ, ϕℓ) be critical points connected by a YMH

flow line such that Lu, Lℓ are line bundles with degLu = degLℓ + 1, (E, ϕ) is stable and (E′, ϕ′)

is polystable with degLu+1 < slope(E′) < slope(E). If (E′, ϕ′) is Higgs stable then it is a Hecke
modification of (E, ϕ). If (E′, ϕ′) is Higgs polystable then it is the graded object of the Seshadri
filtration of a Hecke modification of (E, ϕ).

Proof of Theorem 4.22. Given a Hecke modification 0 → (E′, ϕ′) → (E, ϕ) → Cp → 0 as in Lemma
4.21, choose ϕu ∈ H0(K) such that v ∈ Nϕ,ϕu and apply a gauge transformation to E ⊕ Lu such that
xu = (E, ϕ) ⊕ (Lu, ϕu) is a critical point of YMH. The harmonic representative of the extension class
[(a, φ)] ∈ H1(E∗Lu) from Lemma 4.21 defines an extension 0 → (Lu, ϕu) → (F, ϕ̃) → (E, ϕ) → 0 such
that y = (F, ϕ̃) is in the negative slice of xu, and therefore flows down to a limit isomorphic to the graded
object of the Harder-Narasimhan-Seshadri filtration of (F, ϕ̃).

Lemma 4.21 also shows that (E′, ϕ′) is a Higgs subsheaf of (F, ϕ̃). Lemma 4.4 shows that this has a
resolution as a Higgs subbundle of (F, ϕ̃), however since the Harder-Narasimhan type of (F, ϕ̃) is strictly
less than that of (E, ϕ)⊕ (Lu, ϕu), rank(E′) = rank(F )−1 and degE′ = degE−1, then (E′, ϕ′) already
has the maximal possible slope for a semistable Higgs subbundle of (F, ϕ̃), and therefore (E′, ϕ′) must be
the maximal semistable Higgs subbundle. Since rank(E′) = rank(F ) − 1, then the graded object of the
Harder-Narasimhan-Seshadri filtration of (F, ϕ̃) is (E′

gr, ϕ
′
gr)⊕ (Lℓ, ϕℓ), where (Lℓ, ϕℓ) = (F, ϕ̃)/(E′, ϕ′).

Theorem 3.19 then shows that (E, ϕ)⊕ (Lu, ϕu) and (E′
gr, ϕ

′
gr)⊕ (Lℓ, ϕℓ) are connected by a flow line.

Conversely, if xu = (E, ϕ) ⊕ (Lu, ϕu) and xℓ = (E′, ϕ′) ⊕ (Lℓ, ϕℓ) are critical points connected by a
flow line, then Theorem 3.19 shows that there exists a Higgs pair (F, ϕ̃) in the negative slice of xu such
that (E′, ϕ′) is the graded object of the Seshadri filtration of the maximal semistable Higgs subbundle of
(F, ϕ̃). If (E′, ϕ′) is Higgs stable, then since slope(E′) > slope(Lu) we see (E′, ϕ′) is a Higgs subsheaf of
(E, ϕ) with rank(E) = rank(E′) and deg(E′) = deg(E) − 1. Therefore (E′, ϕ′) is a Hecke modification
of (E, ϕ). If (E′, ϕ′) is Higgs polystable then the same argument shows that (E′, ϕ′) is the graded object of
the Seshadri filtration of a Hecke modification of (E, ϕ). �

In general, for any flow one can define the space Fℓ,u of flow lines connecting upper and lower critical
sets Cu and Cℓ, and the space Pℓ,u ⊂ Cu × Cℓ of pairs of critical points connected by a flow line. These
spaces are equipped with projection maps to the critical sets defined by the canonical projection taking a
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flow line to its endpoints.

(4.4) Fℓ,u

��



 ��

Pℓ,u

}}||
||
||
||
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Cℓ Cu

For the Yang-Mills-Higgs flow, given critical sets Cu and Cℓ of respective Harder-Narasimhan types
(dr , degLu) and (d−1

r , degLu + 1) as in Theorem 4.22 above, there are natural projection maps to the
moduli space Cu → M

Higgs
ss (r, d) and Cℓ → M

Higgs
ss (r, d − 1). Since the flow is G-equivariant, then there

is an induced correspondence variety Mℓ,u ⊂ M
Higgs
ss (r, d− 1)×M

Higgs
ss (r, d).
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Theorem 4.22 shows that ((E′, ϕ′), (E, ϕ)) ∈ Mℓ,u if and only if (E′, ϕ′) is a Hecke modification of
(E, ϕ) and both Higgs pairs are semistable. If r and d are coprime then M

Higgs
ss (r, d) consists of stable

Higgs pairs and so every Hecke modification of (E, ϕ) is semistable. Therefore we have proved

Corollary 4.23. Mℓ,u is the Hecke correspondence.

For Hecke modifications defined at multiple points (non-miniscule Hecke modifications in the terminol-
ogy of [52]), we immediately have the following result.

Corollary 4.24. Let (E, ϕ) be a (0, n)-stable Higgs bundle and consider a Hecke modification 0 →
(E′, ϕ′) → (E, ϕ) → ⊕n

j=1Cpn → 0 defined by n > 1 distinct points {v1, . . . , vn} ∈ PE∗. If there
exists ϕu ∈ H0(K) such that v1, . . . , vn ∈ Nϕ,ϕu , then there is a broken flow line connecting xu =

(E, ϕ) ⊕ (Lu, ϕu) and xℓ = (E′
gr, ϕ

′
gr) ⊕ (Lℓ, ϕℓ), where (E′

gr, ϕ
′
gr) is the graded object of the Seshadri

filtration of the semistable Higgs bundle (E′, ϕ′).

Proof. Inductively apply Theorem 4.22. �

4.4. A geometric criterion for unbroken YMH flow lines. Corollary 4.24 gives a criterion for two YMH

critical points xu = (E, ϕ) ⊕ (Lu, ϕu) and xℓ = (E′, ϕ′) ⊕ (Lℓ, ϕℓ) to be connected by a broken flow
line. It is natural to ask whether they are also connected by an unbroken flow line. The goal of this section
is to answer this question by giving a geometric construction for points in the negative slice of xu which
correspond to unbroken flow lines connecting xu and xℓ in terms of the secant varieties Secn(Nϕ,ϕu). For
holomorphic bundles, the connection between secant varieties and Hecke modifications has been studied in
[29], [4] and [17].
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Given a YMH critical point xu = (E, ϕ) ⊕ (Lu, ϕu) with (E, ϕ) stable and rankLu = 1, consider an
extension 0 → (Lu, ϕu) → (F, ϕ̃) → (E, ϕ) → 0 with extension class [(a, φ)] ∈ H1(E∗Lu) = S−

xu . Let
0 → (E′, ϕ′) → (E, ϕ) → ⊕n

j=1Cpj → 0 be a Hecke modification of (E, ϕ) as in the previous lemma, such
that degLu < slope(E′).

Lemma 4.25. If (G,ϕG) is a semistable Higgs subbundle of (F, ϕ̃) with slope(G) > degLu and rank(G) <

rank(E), then there is a Higgs subbundle (G′, ϕ′G) ⊂ (E, ϕ) with slope(G′) ≥ slope(G) and rank(G) =

rank(G′).

Proof. If (G,ϕG) is a semistable Higgs subbundle of (F, ϕ̃) with slope(G) > degLu, then H0(G∗Lu) = 0,
and so (G,ϕG) is a Higgs subsheaf of (E, ϕ).

(G,ϕG)

zzuuu
uuu

uuu

���
�
�

0 // (Lu, ϕu) // (F, ϕ̃) // (E, ϕ) // 0

Lemma 4.4 shows that the subsheaf (G,ϕG) can be resolved to form a Higgs subbundle (G′, ϕ′G) of (E, ϕ)
with slope(G′) ≥ slope(G). �

Theorem 4.26. Let (E, ϕ) be a stable Higgs bundle with Segre invariant sk(E, ϕ) and choose n such that
0 < 2n − 1 < min1≤k≤r−1

(
1
ksk(E, ϕ)

)
. Let 0 → (E′, ϕ′) → (E, ϕ) → ⊕n

j=1Cpj → 0 be a Hecke
modification of (E, ϕ) defined by distinct points v1, . . . , vn ∈ PE∗, and let (Lu, ϕu) be a Higgs line bundle
such that v1, . . . , vn ∈ Nϕ,ϕu . Choose a metric such that xu = (E, ϕ)⊕ (Lu, ϕu) is a YMH critical point.

Then any extension class [(a, φ)] ∈ span{v1, . . . , vn}∩
(
Secn(Nϕ,ϕu) \ Secn−1(Nϕ,ϕu)

)
⊂ PH1(E∗Lu)

is isomorphic to an unbroken flow line connecting xu = (E, ϕ)⊕ (Lu, ϕu) and xℓ = (E′, ϕ′)⊕ (Lℓ, ϕℓ).

Proof. Let (F, ϕ̃) be a Higgs bundle determined by the extension class [(a, φ)] ∈ PH1(E∗Lu). The choice
of bundle is not unique, but the isomorphism class of (F, ϕ̃) is unique. The proof reduces to showing that
(E′, ϕ′) is the maximal semistable Higgs subbundle of (F, ϕ̃).

Since [(a, φ)] /∈ Secn−1(Nϕ,ϕu), then Lemma 4.20 shows that (E′, ϕ′) is the subsheaf of (E, ϕ) with
maximal degree among those that lift to a subsheaf of (F, ϕ̃). Any semistable Higgs subbundle (E′′, ϕ′′) of
(F, ϕ̃) with rank(E′′) = rank(E) either has slope(E′′) ≤ degLu < slope(E′), or it is a subsheaf of (E, ϕ)
and so must have slope(E′′) ≤ slope(E′).

The previous lemma shows that if (G,ϕG) is any semistable Higgs subbundle of (F, ϕ̃) with slope(G) >

degLu and rank(G) < rank(E), then there is a Higgs subbundle (G′, ϕ′G) of (E, ϕ) with slope(G′) ≥
slope(G). The upper bound on n = degE − degE′ in terms of the Segre invariant then implies that
slope(E′) > slope(G′) ≥ slope(G) by Lemma 4.14.

Therefore the subbundle (Ẽ′, ϕ̃′) resolving the subsheaf (E′, ϕ′) ⊂ (F, ϕ̃) is the maximal semistable
Higgs subbundle of (F, ϕ̃). Since (Ẽ′, ϕ̃′) is semistable and slope(Ẽ′) ≥ slope(E′) > degLu, then
H0((Ẽ′)∗Lu) = 0, and so (Ẽ′, ϕ̃′) is a Higgs subsheaf of (E, ϕ) that lifts to a subbundle of (F, ϕ̃). Since
degE′ is maximal among all such subsheaves, then we must have (E′, ϕ′) = (Ẽ′, ϕ̃′) and so (E′, ϕ′) is the
maximal semistable subbundle of (F, ϕ̃). Therefore Theorem 3.19 shows that xu and xℓ are connected by
an unbroken flow line. �
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If rank(F ) = 2 (so that E is a line bundle), then the condition on the Segre invariant sk(E, ϕ) becomes
vacuous. Moreover, PE∗ ∼= X and so Hecke modifications of E are determined by a subset {v1, . . . , vn} ⊂
X . Therefore in the case rank(F ) = 2, we have a complete classification of the YMH flow lines on the
space of Higgs bundles B(F ).

Corollary 4.27. Let F → X be a C∞ Hermitian vector bundle with rank(F ) = 2. Let xu = (Lu1 , ϕ
u
1) ⊕

(Lu2 , ϕ
u
2) and xℓ = (Lℓ1, ϕ

ℓ
1) ⊕ (Lℓ2, ϕ

ℓ
2) be non-minimal critical points with YMH(xu) > YMH(xℓ). Sup-

pose without loss of generality that degLu1 > degLℓ1 > degLℓ2 > degLu2 . Let n = degLu1 − degLℓ1.
Then xu and xℓ are connected by a broken flow line if and only if there exists {v1, . . . , vn} ∈ Nϕu1 ,ϕ

u
2

such
that

0 → (Lℓ1, ϕ
ℓ
1) → (Lu1 , ϕ

u
1) → ⊕n

j=1Cpj → 0

0 → (Lu2 , ϕ
u
2) → (Lℓ2, ϕ

ℓ
2) → ⊕n

j=1Cpj → 0

are both Hecke modifications determined by {v1, . . . , vn}. They are connected by an unbroken flow line if
the previous condition holds and {v1, . . . , vn} ∈ Secn(Nϕu1 ,ϕ

u
2
) \ Secn−1(Nϕu1 ,ϕ

u
2
).

APPENDIX A. UNIQUENESS FOR THE REVERSE YANG-MILLS-HIGGS FLOW

The methods of Donaldson [8] and Simpson [45] show that the Yang-Mills-Higgs flow resembles a non-
linear heat equation, and therefore the backwards flow is ill-posed. In Section 3.1 we prove existence of
solutions to the backwards heat flow that converge to a critical point. To show that these solutions are well-
defined we prove in this section that if a solution to the reverse YMH flow exists then it must be unique.

Using the Hermitian metric, let dA be the Chern connection associated to ∂̄A and let ψ = ϕ + ϕ∗ ∈
Ω1(i ad(E)). The holomorphicity condition ∂̄Aϕ = 0 becomes the pair of equations dAψ = 0, d∗Aψ = 0

which also imply that [FA, ψ] = d2Aψ = 0, and the Yang-Mills-Higgs functional is ∥FA + ψ ∧ ψ∥2L2 .

Proposition A.1. Let (dA1 , ψ1)(t), (dA2 , ψ2)(t) be two solutions of the Yang-Mills-Higgs flow (A.4) on a
compact Riemann surface with respective initial conditions (dA1 , ψ1)(0) and (dA2 , ψ2)(0). If there exists a
finite T > 0 such that (dA1 , ψ1)(T ) = (dA2 , ψ2)(T ) then (dA1 , ψ1)(t) = (dA2 , ψ2)(t) for all t ∈ [0, T ].

The result of Proposition A.1 is valid when the base manifold is a compact Riemann surface, since we
use the estimates of [51, Sec. 3.2] to prove that the constant C in Lemma A.2 is uniform. In the case of the
Yang-Mills flow on a compact Kähler manifold the estimates of Donaldson in [8] show that we can make
this constant uniform on a finite time interval [0, T ] and so the result also applies in this setting. The setup
described in the previous paragraph consisting of Higgs pairs (dA, ψ) satisfying dAψ = 0, d∗Aψ = 0 is valid
on any Riemannian manifold, and so the result of Proposition A.1 will also apply to any class of solutions for
which one can prove that the connection, Higgs field, the curvature and all of their derivatives are uniformly
bounded on the given finite time interval [0, T ].

Let ∇A denote the covariant derivative associated to the connection dA. The complex connection asso-
ciated to the pair (dA, ψ) is D(A,ψ)η = dAη + [ψ, η] and the Laplacian is ∆(A,ψ)η = D∗

(A,ψ)D(A,ψ)η +

D(A,ψ)D
∗
(A,ψ)η for any form η ∈ Ωp(End(E)). The equation dAψ = 0 implies that the curvature of the

complex connection is D(A,ψ)D(A,ψ)η = [FA + ψ ∧ ψ, η].
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We have the following identities which will be useful in what follows. The notation a × b is used to
denote various bilinear expressions with constant coefficients.

0 = dA(FA + ψ ∧ ψ), 0 = [ψ, FA + ψ ∧ ψ](A.1)

∆(A,ψ)η = ∇∗
A∇Aη + (FA + ψ ∧ ψ)× η +RM × η + ψ × ψ × η +∇Aψ × ψ × η(A.2)

0 = D∗
(A,ψ)D

∗
(A,ψ)(FA + ψ ∧ ψ)(A.3)

The first identity follows from the Bianchi identity and the equation dAψ = 0. Equation (A.2) is the
Weitzenböck identity for a Higgs pair which follows from the usual identity for ∇A (see for example [3])
together with the fact that (ψ ∧ ψ) × η and the remaining terms in the Laplacian are of the form ψ × ψ ×
η +∇Aψ × ψ × η. To see the identity (A.3), take the inner product of the right hand side with an arbitrary
η ∈ Ω0(End(E)). We have (cf. [41, (2.2)] for the case ψ = 0)⟨

D∗
(A,ψ)D

∗
(A,ψ)(FA + ψ ∧ ψ), η

⟩
=
⟨
FA + ψ ∧ ψ,D(A,ψ)D(A,ψ)η

⟩
= ⟨FA + ψ ∧ ψ, [FA + ψ ∧ ψ, η]⟩ = 0

Consider the Yang-Mills-Higgs flow equations

(A.4)
∂A

∂t
= −d∗A(FA + ψ ∧ ψ), ∂ψ

∂t
= ∗[ψ, ∗(FA + ψ ∧ ψ)]

After using the metric to decompose Ω1(End(E)) ∼= Ω1(ad(E)) ⊕ Ω1(i ad(E)), the flow equation can be
written more compactly as

∂

∂t
(dA + ψ) = −D∗

(A,ψ)(FA + ψ ∧ ψ)

We then have

∂

∂t
(FA + ψ ∧ ψ) = dA

(
∂A

∂t

)
+
∂ψ

∂t
∧ ψ + ψ ∧ ∂ψ

∂t

= −dAd∗A(FA + ψ ∧ ψ) + [ψ, ∗[ψ, ∗(FA + ψ ∧ ψ)]]

= −∆(A,ψ)(FA + ψ ∧ ψ)− dA ∗ [ψ, ∗(FA + ψ ∧ ψ)] + [ψ, d∗A(FA + ψ ∧ ψ)]

where in the last step we use the Bianchi identity (A.1). We also have

∂

∂t
(d∗A(FA + ψ ∧ ψ)) = − ∗

[
∂A

∂t
, ∗(FA + ψ ∧ ψ)

]
+ d∗A

(
∂

∂t
(FA + ψ ∧ ψ)

)
= ∗ [d∗A(FA + ψ ∧ ψ), FA + ψ ∧ ψ]− d∗AdAd

∗
A(FA + ψ ∧ ψ)

+ d∗A[ψ, ∗[ψ, ∗(FA + ψ ∧ ψ)]]

and

∂

∂t
(− ∗ [ψ, ∗(FA + ψ ∧ ψ)]) = − ∗

[
∂ψ

∂t
, ∗(FA + ψ ∧ ψ)

]
− ∗

[
ψ,

∂

∂t
∗ (FA + ψ ∧ ψ)

]
= ∗ [− ∗ [ψ, ∗(FA + ψ ∧ ψ)], ∗(FA + ψ ∧ ψ)] + ∗ [ψ, ∗dAd∗A(FA + ψ ∧ ψ)]

− ∗ [ψ, ∗[ψ, ∗[ψ, ∗(FA + ψ ∧ ψ)]]]
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Adding these two results gives us

∂

∂t

(
D∗

(A,ψ)(FA + ψ ∧ ψ)
)
= ∗

[
D∗

(A,ψ)(FA + ψ ∧ ψ), FA + ψ ∧ ψ
]
−D∗

(A,ψ)D(A,ψ)D
∗
(A,ψ)(FA + ψ ∧ ψ)

= ∗
[
D∗

(A,ψ)(FA + ψ ∧ ψ), FA + ψ ∧ ψ
]
−∆(A,ψ)D

∗
(A,ψ)(FA + ψ ∧ ψ)

where the last step uses (A.3). Let µ(A,ψ) = FA + ψ ∧ ψ and ν(A,ψ) = D∗
(A,ψ)(FA + ψ ∧ ψ). The above

equations become(
∂

∂t
+∆(A,ψ)

)
µ(A,ψ) = −dA ∗ [ψ, ∗(FA + ψ ∧ ψ)] + [ψ, d∗A(FA + ψ ∧ ψ)](A.5) (

∂

∂t
+∆(A,ψ)

)
ν(A,ψ) = ∗[ν(A,ψ), ∗µ(A,ψ)](A.6)

Now consider two solutions (A1, ψ1)(t) and (A2, ψ2)(t) to the Yang-Mills-Higgs flow equations (A.4)
on the time interval [0, T ] such that (A1, ψ1)(T ) = (A2, ψ2)(T ). We will show below that this implies
(A1, ψ1)(0) = (A2, ψ2)(0).

Define (at, φt) = (A2, ψ2)(t)− (A1, ψ1)(t), mt = µ(A2,ψ2) − µ(A1,ψ1) and nt = ν(A2,ψ2) − ν(A1,ψ1). In
terms of (at, φt) we can write

mt = µ(A2,ψ2) − µ(A1,ψ1) = dA1at + at ∧ at + [ψ,φt] + φt ∧ φt

and for any η ∈ Ωp(End(E)) the difference of the associated Laplacians has the form

(A.7)
(
∆(A2,ψ2) −∆(A1,ψ1)

)
η = ∇Aa× η + a×∇Aη + a× a× η + ψ × φ× η + φ× φ× η

where again ω1 × ω2 is used to denote a bilinear expression in ω1 and ω2 with constant coefficients. By
definition of ν(A,ψ) as the gradient of the Yang-Mills-Higgs functional at (dA, ψ) we immediately have

∂

∂t
(at + φt) = nt, and

∂

∂t
(∇Aat +∇Aφt) =

(
∂A

∂t
× at,

∂A

∂t
× φt

)
+∇Ant

Equation (A.5) then becomes(
∂

∂t
+∆(A1,ψ1)

)
mt = −

(
∆(A2,ψ2) −∆(A1,ψ1)

)
µ(A2,ψ2)

+ at × ψ1 × (FA1 + ψ1 ∧ ψ1) +∇A1φt × (FA1 + ψ1 ∧ ψ1)

+∇A1ψ1 ×mt + ψ1 × nt

and equation (A.6) becomes(
∂

∂t
+∆(A1,ψ1)

)
nt = ∗[ν(A2,ψ2), ∗µ(A2,ψ2)]− ∗[ν(A1,ψ1), ∗µ(A1,ψ1)]−

(
∆(A2,ψ2) −∆(A1,ψ1)

)
ν(A2,ψ2)

= ∗[nt, ∗µ(A2,ψ2)] + ∗[ν(A1,ψ1), ∗mt]−
(
∆(A2,ψ2) −∆(A1,ψ1)

)
ν(A2,ψ2)

Using (A.7) and the Weitzenböck formula (A.2), we then have the following inequalities. In the case where
X is a compact Riemann surface then the estimates of [51, Sec. 2.2] show that all of the derivatives of the
connection, the Higgs field and the curvature FA are uniformly bounded along the flow and so the constant
can be chosen uniformly on the interval [0, T ].



48 GRAEME WILKIN

Lemma A.2. For any pair of solutions (dA1 , ψ1)(t) and (dA2 , ψ2)(t) to the Yang-Mills-Higgs flow (A.4)
there exists a positive constant C (possibly depending on t) such that the following inequalities hold∣∣∣∣( ∂

∂t
+∇∗

A1
∇A1

)
mt

∣∣∣∣ ≤ C (|at|+ |φt|+ |∇A1at|+ |∇A1φt|+ |mt|+ |nt|)(A.8) ∣∣∣∣( ∂

∂t
+∇∗

A1
∇A1

)
nt

∣∣∣∣ ≤ C (|at|+ |φt|+ |∇A1at|+ |∇A1φt|+ |mt|+ |nt|)(A.9) ∣∣∣∣ ∂∂t(at + φt)

∣∣∣∣ = |nt|(A.10) ∣∣∣∣ ∂∂t(∇Aat +∇Aφt)

∣∣∣∣ ≤ C (|at|+ |φt|+ |∇Ant|)(A.11)

Moreover, if X is a compact Riemann surface then the constant C can be chosen uniformly on any finite
time interval [0, T ].

For simplicity of notation, in the following we use ∇ := ∇A1 and � := ∇∗
A1

∇A1 . Let X := (mt, nt)

and Y := (at, φt,∇at,∇φt). The previous lemma implies that there exists a positive constant C such that
the following inequalities hold ∣∣∣∣∂X∂t +�X

∣∣∣∣ ≤ C (|X|+ |∇X|+ |Y |)∣∣∣∣∂Y∂t
∣∣∣∣ ≤ C (|X|+ |∇X|+ |Y |)

(A.12)

A general result of Kotschwar in [28, Thm 3] shows that any system satisfying (A.12) on the time interval
[0, T ] for which X(T ) = 0, Y (T ) = 0, must also satisfy X(t) = 0, Y (t) = 0 for all t ∈ [0, T ]. In the
context of the Yang-Mills-Higgs flow (A.4), this gives us the proof of Proposition A.1.
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