MORSE THEORY FOR THE SPACE OF HIGGS G-BUNDLES

INDRANIL BISWAS AND GRAEME WILKIN

Abstract

Fix a C^{∞} principal G-bundle E_{G}^{0} on a compact connected Riemann surface X, where G is a connected complex reductive linear algebraic group. We consider the gradient flow of the Yang-Mills-Higgs functional on the cotangent bundle of the space of all smooth connections on E_{G}^{0}. We prove that this flow preserves the subset of Higgs G-bundles, and, furthermore, the flow emanating from any point of this subset has a limit. Given a Higgs G-bundle, we identify the limit point of the integral curve passing through it. These generalize the results of the second named author on Higgs vector bundles.

1. Introduction

The equivariant Morse theory of the Yang-Mills functional for vector bundles over a compact Riemann surface has been an extremely useful tool in studying the topology of the moduli space of semistable holomorphic bundles, beginning with the work of Atiyah and Bott in [2], and continuing with the results of Kirwan on the intersection cohomology in [15]. In the case where the rank and degree of the bundle are coprime, this program was continued further by Kirwan in [16], by Jeffrey and Kirwan (who computed the intersection pairings in [14]), and Earl and Kirwan in [11] who wrote down the relations in the cohomology ring. As a result, via Morse theory we now have a complete description of the cohomology of this space.

The convergence properties of the gradient flow of the Yang-Mills functional were first studied by Daskalopoulos in [7] and Råde in [17]. Råde studies the more general problem of the Yang-Mills flow on the space of connections on a 2 or 3 dimensional manifold, and shows that the gradient flow converges to a critical point of the Yang-Mills functional. When the base manifold is a compact Riemann surface, then Råde's results show that there exists a Morse stratification of the space of holomorphic bundles. In [7], Daskalopoulos shows that this Morse stratification of the space of holomorphic bundles coincides with the algebraically defined Harder-Narasimhan stratification used by Atiyah and Bott, and uses this to obtain information about the homotopy type of the space of strictly stable rank 2 bundles.

The analytically more complicated case of the Yang-Mills flow on the space of holomorphic structures on a Kähler surface (where bubbling occurs at isolated points on the surface in the limit of the flow) was studied by Daskalopoulos and Wentworth in [9], who showed that the algebraic and analytic stratifications coincide, and that the bubbling in the limit of the flow is determined by the algebraic properties of the initial conditions.

[^0]The main theorem of [19] extend the gradient flow results of Daskalopoulos and Råde to the space of Higgs vector bundles over a compact Riemann surface, where the functional in question is now the Yang-Mills-Higgs functional (see the definition below). These results were then used in $[8]$ to carry out an analog of Atiyah and Bott's construction on the space of rank 2 Higgs bundles, the first step in carrying out the Atiyah/Bott/Kirwan program described above for Higgs bundles. The purpose of the current paper is to generalize the gradient flow convergence theorem of [19] to the space of Higgs principal bundles over a compact Riemann surface.

The main result of the paper can be stated as follows. Let X be a compact Riemann surface. Given a C^{∞} vector bundle V on X, the space of C^{∞} forms of type (p, q) with values in V will be denoted by $A^{p, q}(V)$. Let G a connected reductive linear algebraic group over \mathbb{C}, and fix a maximal compact subgroup K. Fix a principal K-bundle E_{K}^{0} with compact structure group K, and let E_{G}^{0} denote the associated principal bundle obtained by extending the structure group to G. Let \mathcal{A}_{0} be the space of holomorphic structures on E_{G}^{0}, and consider the space $\mathcal{B}_{0}=\mathcal{A}_{0} \times A^{1,0}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right)$ (we show in Section 2 that this is the total space of the cotangent bundle of $\left.\mathcal{A}_{0}\right)$. A pair $\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \in \mathcal{B}_{0}$ is called a Higgs pair if θ is holomorphic with respect to $\bar{\partial}_{E_{G}^{0}}$. The space of Higgs pairs is denoted $\mathcal{S}\left(E_{G}^{0}\right)$, and the Yang-Mills-Higgs functional on the space \mathcal{B}_{0} is given by

$$
\begin{gathered}
\mathrm{YMH}_{G}: \mathcal{B}_{0} \rightarrow \mathbb{R} \\
\mathrm{YMH}_{G}\left(\bar{\partial}_{E_{G}^{0}}, \theta\right)=\left\|K\left(\bar{\partial}_{E_{G}^{0}}\right)+\left[\theta, \theta^{*}\right]\right\|^{2}
\end{gathered}
$$

where $K\left(\bar{\partial}_{E_{G}^{0}}\right)$ is the curvature of the connection on E_{K}^{0} associated to the holomorphic structure $\bar{\partial}_{E_{G}^{0}}$ on E_{G}^{0} (see Section 2 and the definition in equation (2.23) for full details of this construction).

The notion of the Harder-Narasimhan reduction of a Higgs principal bundle is recalled in Section 4, and we show that the definition of socle reduction for semistable vector bundles (cf. [13]) extends to the semistable Higgs G-bundles. Combining the HarderNarasimhan reduction with the socle reduction gives the principal bundle analog of the graded object of the Harder-Narasimhan-Seshadri filtration studied in [19]. The main theorem of this paper generalizes the results of [19] to Higgs principal bundles.

Theorem 1.1. The gradient flow of YMH_{G} with initial conditions $\left(\bar{\partial}_{E_{G}^{0}}, \theta\right)$ in the space of Higgs pairs on E_{G}^{0} converges to a Higgs pair isomorphic to the pair obtained by combining the socle reduction with the Harder-Narasimhan reduction of $\left(\bar{\partial}_{E_{G}^{0}}, \theta\right)$.

The idea of the proof is to reduce to the case of Higgs vector bundles studied in [19]. Fix a C^{∞} principal G-bundle E_{G}^{0} on a compact Riemann surface X. Given a faithful representation $\rho: G \longrightarrow G L(V)$, let $\mathcal{S}(W)$ denote the space of Higgs pairs on the Hermitian vector bundle $W=E_{G}^{0}(V)$ associated to E_{G}^{0} via ρ. We show that the Yang-Mills-Higgs flow on $\mathcal{S}\left(E_{G}^{0}\right)$ is induced by the Yang-Mills-Higgs flow on $\mathcal{S}(W)$, and that the convergence of the flow on $\mathcal{S}(W)$ (guaranteed by the results of [19]) implies that the flow of YMH_{G} on $\mathcal{S}\left(E_{G}^{0}\right)$ converges also. The result then follows by showing that the Harder-Narasimhan-socle reduction on W induces the Harder-Narasimhan-socle reduction on E_{G}^{0}.

The paper is organized as follows. Section 2 contains the basic results necessary to the rest of the paper: the construction of the $\operatorname{map} \phi: \mathcal{S}\left(E_{G}^{0}\right) \hookrightarrow \mathcal{S}(W)$ in equation (2.14), and a proof that the Yang-Mills-Higgs flows coincide (Corollary 2.4). The main result of Section 3 is Theorem 3.4, which shows that the flow of YMH_{G} on $\mathcal{S}\left(E_{G}^{0}\right)$ converges. The results of the final section relate the Harder-Narasimhan-socle reduction of a Higgs pair $\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \in \mathcal{S}\left(E_{G}^{0}\right)$ to that of the associated Higgs pair $\phi\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \in \mathcal{S}(W)$.

2. The Yang-Mills-Higgs functional

Let G be a connected reductive linear algebraic group defined over \mathbb{C}. Fix a maximal compact subgroup

$$
\begin{equation*}
K \subset G . \tag{2.1}
\end{equation*}
$$

Fix a faithful representation

$$
\begin{equation*}
\rho: G \longrightarrow \operatorname{GL}(V), \tag{2.2}
\end{equation*}
$$

where V is a finite dimensional complex vector space. Fix a maximal compact subgroup \widetilde{K}

$$
\begin{equation*}
\rho(K) \subset \widetilde{K} \subset \mathrm{GL}(V) \tag{2.3}
\end{equation*}
$$

of GL (V).
The Lie algebra of G will be denoted by \mathfrak{g}. The group G has the adjoint action on \mathfrak{g}. So \mathfrak{g} is a G-module.

Let X be a compact connected Riemann surface. Fix a C^{∞} principal K-bundle

$$
\begin{equation*}
E_{K}^{0} \longrightarrow X \tag{2.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
E_{G}^{0}:=E_{K}^{0}(G)=E_{K}^{0} \times{ }_{K} G \longrightarrow X \tag{2.5}
\end{equation*}
$$

be the principal G-bundle obtained by extending the structure group of E_{K}^{0} using the inclusion map $K \hookrightarrow G$. Let $\operatorname{ad}\left(E_{G}^{0}\right):=E_{G}^{0}(\mathfrak{g})=E_{G}^{0} \times_{G} \mathfrak{g}$ be the adjoint bundle of E_{G}^{0}. In other words, $\operatorname{ad}\left(E_{G}^{0}\right)$ is the vector bundle over X associated to the principal G-bundle E_{G}^{0} for the G-module \mathfrak{g}.

Let

$$
\begin{equation*}
\mathcal{A}_{0}:=\mathcal{A}_{E_{G}^{0}} \tag{2.6}
\end{equation*}
$$

be the space of all holomorphic structures on the principal G-bundle E_{G}^{0}. We note that \mathcal{A}_{0} is an affine space for the vector space $A^{0,1}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right)$, which is the space of all smooth $(0,1)$-forms with values in $\operatorname{ad}\left(E_{G}^{0}\right)$. Fix a holomorphic structure

$$
\begin{equation*}
\bar{\partial}_{0}:=\bar{\partial}_{E_{G}^{0}}^{0} \tag{2.7}
\end{equation*}
$$

on E_{G}^{0}. Using $\bar{\partial}_{0}$, the affine space \mathcal{A}_{0} gets identified with $A^{0,1}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right)$.
Let $E_{G} \longrightarrow X$ be a holomorphic principal G-bundle. A Higgs field on E_{G} is a holomorphic section of $\operatorname{ad}\left(E_{G}\right) \otimes K_{X}$ over X. A pair $\left(E_{G}, \theta\right)$, where θ is a Higgs field on E_{G}, is called a Higgs G-bundle. A holomorphic structure on a principal G-bundle E_{G} defines a holomorphic structure on the vector bundle $\operatorname{ad}\left(E_{G}\right) \otimes K_{X}$. The Dolbeault operator on $\operatorname{ad}\left(E_{G}^{0}\right) \otimes K_{X}$ corresponding to any $\bar{\partial}_{E_{G}^{0}} \in \mathcal{A}_{0}$ (see (2.6)) will also be denoted by $\bar{\partial}_{E_{G}^{0}}$.

We note that a pair $\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \in \mathcal{A}_{0} \times A^{1,0}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right)$ with $\bar{\partial}_{E_{G}^{0}}(\theta)=0$ defines a Higgs G-bundle.

Define

$$
\begin{equation*}
\mathcal{B}_{0}:=\mathcal{A}_{0} \times A^{1,0}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right) . \tag{2.8}
\end{equation*}
$$

So if $\bar{\partial}_{E_{G}^{0}} \in \mathcal{A}_{0}$, and θ is a Higgs field on the holomorphic principal G-bundle $\left(E_{G}^{0}, \bar{\partial}_{E_{G}^{0}}\right)$, then $\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \in \mathcal{B}_{0}$. We will see later that \mathcal{B}_{0} is the total space of the cotangent bundle of the affine space \mathcal{A}_{0}.

Let

$$
\begin{equation*}
W:=E_{K}^{0}(V) \longrightarrow X \tag{2.9}
\end{equation*}
$$

be the vector bundle associated to the principal K-bundle E_{K}^{0} (see (2.4)) for the K module V in (2.2). Therefore, W is identified with the vector bundle associated to the principal G-bundle E_{G}^{0} in (2.5) for the G-module V. A holomorphic structure on E_{G}^{0} defines a holomorphic structure on the vector bundle W. Using the injective homomorphism of Lie algebras associated to ρ in (2.2)

$$
\begin{equation*}
\mathfrak{g} \longrightarrow \operatorname{End}_{\mathbb{C}}(V), \tag{2.10}
\end{equation*}
$$

we get a homomorphism of vector bundles

$$
\begin{equation*}
\operatorname{ad}\left(E_{G}^{0}\right) \longrightarrow \operatorname{End}(W)=W \otimes W^{*} \tag{2.11}
\end{equation*}
$$

where W is the vector bundle in (2.9). Take any $\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \in \mathcal{B}_{0}$ (see (2.8)). Let $\bar{\partial}_{W}$ be the holomorphic structure on W defined by $\bar{\partial}_{E_{G}^{0}}$. Let $\theta_{W} \in A^{1,0}(\operatorname{End}(W))$ be the smooth section given by θ using the homomorphism in (2.11).

Let $\mathcal{A}(W)$ be the space of all holomorphic structures on the vector bundle W. Define

$$
\begin{equation*}
\mathcal{B}_{W}:=\mathcal{A}(W) \times A^{1,0}(\operatorname{End}(W)) . \tag{2.12}
\end{equation*}
$$

Since W is associated to E_{G}^{0} by a faithful representation, there is a natural embedding

$$
\begin{equation*}
\delta: \mathcal{A}_{0} \longrightarrow \mathcal{A}(W), \tag{2.13}
\end{equation*}
$$

where \mathcal{A}_{0} is defined in (2.6). We have an embedding

$$
\begin{equation*}
\phi: \mathcal{B}_{0} \longrightarrow \mathcal{B}_{W} \tag{2.14}
\end{equation*}
$$

that sends any $\left(\bar{\partial}_{E_{G}^{0}}, \theta\right)$ to the pair $\left(\bar{\partial}_{W}, \theta_{W}\right)$ constructed above from $\left(\bar{\partial}_{E_{G}^{0}}, \theta\right)$.
The Lie algebra of \widetilde{K} (see (2.3)) will be denoted by $\widetilde{\mathfrak{k}}$. Let g_{0} denote the inner product on $\widetilde{\mathfrak{k}}$ defined by $\langle A, B\rangle=-\operatorname{trace}(A B)$. Since $\operatorname{End}_{\mathbb{C}}(V)=\widetilde{\mathfrak{k}} \oplus \sqrt{-1 \widetilde{\mathfrak{k}}}$, where V is the G-module in (2.2), this g_{0} defines a Hermitian inner product g_{1} on $\operatorname{End}_{\mathbb{C}}(V)$. The Lie algebra of K (see (2.1)) will be denoted by \mathfrak{k}. Let g_{0}^{\prime} be the restriction of g_{0} to the subspace $\mathfrak{k} \subset \widetilde{\mathfrak{k}}$. Since $\mathfrak{g}=\mathfrak{k} \oplus \sqrt{-1} \mathfrak{k}$, this g_{0}^{\prime} defines a Hermitian inner product g_{1}^{\prime} on \mathfrak{g}. Note that g_{1}^{\prime} is the restriction of g_{1}. The inner products g_{1}^{\prime} and g_{1} induce inner products on the fibers of the vector bundle $\operatorname{ad}\left(E_{G}^{0}\right)$ and $\operatorname{End}(W)$ respectively. Indeed, these follow from the fact that g_{1}^{\prime} and g_{1} are K-invariant and \widetilde{K}-invariant respectively.

We will now show that the Cartesian product \mathcal{B}_{0} in (2.8) is the total space of the cotangent bundle of the affine space \mathcal{A}_{0}. For any $\left(\omega_{0,1}, \omega_{1,0}\right) \in A^{0,1}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right) \times A^{1,0}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right)$, we have

$$
\left\langle\omega_{0,1}, \omega_{1,0}\right\rangle \in A^{1,1}
$$

using the inner product on the fibers of $\operatorname{ad}\left(E_{G}^{0}\right)$. Consider the pairing

$$
A^{0,1}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right) \times A^{1,0}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right) \longrightarrow \mathbb{C}
$$

defined by

$$
\left(\omega_{0,1}, \omega_{1,0}\right) \longmapsto \int_{X}\left\langle\omega_{0,1}, \omega_{1,0}\right\rangle \in \mathbb{C} .
$$

This pairing identifies $A^{1,0}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right)$ with the dual of $A^{0,1}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right)$. Therefore, the total space of the cotangent bundle of the affine space \mathcal{A}_{0} gets identified with \mathcal{B}_{0}.

Similarly, using the inner product on the fibers of $\operatorname{End}(W)$, the Cartesian product \mathcal{B}_{W} in (2.12) gets identified with the total space of the cotangent bundle of the affine space $\mathcal{A}(W)$.

Since the fibers of the vector bundles $\operatorname{ad}\left(E_{G}^{0}\right)$ and $\operatorname{End}(W)$ have inner products, we get inner products on the vector spaces

$$
A^{0,1}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right) \oplus A^{1,0}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right) \quad \text { and } \quad A^{0,1}(E n d(W)) \oplus A^{1,0}(E n d(W))
$$

More precisely, the inner product on $A^{0,1}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right) \oplus A^{1,0}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right)$ is defined by

$$
\left\|\left(\omega_{0,1}, \omega_{1,0}\right)\right\|^{2}=\sqrt{-1} \int_{X}\left\langle\omega_{1,0}, \overline{\omega_{1,0}}\right\rangle-\sqrt{-1} \int_{X}\left\langle\omega_{0,1}, \overline{\omega_{0,1}}\right\rangle
$$

The inner product on $A^{0,1}(\operatorname{End}(W)) \oplus A^{1,0}(\operatorname{End}(W))$ is defined similarly.
Recall that \mathcal{B}_{0} and \mathcal{B}_{W} are identified with

$$
A^{0,1}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right) \oplus A^{1,0}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right) \quad \text { and } \quad A^{0,1}(E n d(W)) \oplus A^{1,0}(E n d(W))
$$

respectively (the affine space \mathcal{A}_{0} is identified with $A^{0,1}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right)$ after choosing the base point $\bar{\partial}_{0}$ in (2.7); since $\bar{\partial}_{0}$ gives a point in $\mathcal{A}(W)$, it follows that $\mathcal{A}(W)$ is identified with $\left.A^{0,1}(\operatorname{End}(W))\right)$. Therefore, the inner products on $A^{0,1}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right) \oplus A^{1,0}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right)$ and $A^{0,1}(\operatorname{End}(W)) \oplus A^{1,0}(\operatorname{End}(W))$ define Kähler structures on \mathcal{B}_{0} and \mathcal{B}_{W} respectively.

Lemma 2.1. The embedding ϕ in (2.14) preserves the Kähler forms. Moreover, the second fundamental form of the embedding ϕ vanishes. In particular, this embedding is totally geodesic.

Proof. Since the inner product g_{1}^{\prime} on \mathfrak{g} is the restriction of the inner product g_{1} on $\operatorname{End}_{\mathbb{C}}(V)$, it follows immediately that ϕ preserves the Kähler forms.

Let $\mathfrak{g}^{\perp} \subset \operatorname{End}_{\mathbb{C}}(V)$ be the orthogonal complement for the inner product g_{1} on $\operatorname{End}_{\mathbb{C}}(V)$. Since g_{1} is K-invariant (recall that it is in fact \widetilde{K}-invariant), and the adjoint action of K on $\operatorname{End}_{\mathbb{C}}(V)$ preserves the subspace $\mathfrak{g} \subset \operatorname{End}_{\mathbb{C}}(V)$, it follows that the adjoint action of K on $\operatorname{End}_{\mathbb{C}}(V)$ preserves \mathfrak{g}^{\perp}. Since K is Zariski dense in G, it follows that the adjoint action of G on $\operatorname{End}_{\mathbb{C}}(V)$ preserves \mathfrak{g}^{\perp}. Therefore, the orthogonal decomposition

$$
\begin{equation*}
\operatorname{End}_{\mathbb{C}}(V)=\mathfrak{g} \oplus \mathfrak{g}^{\perp} \tag{2.15}
\end{equation*}
$$

is preserved by the adjoint action of G.
Let

$$
\begin{equation*}
F_{0}:=E_{K}^{0}\left(\mathfrak{g}^{\perp}\right) \longrightarrow X \tag{2.16}
\end{equation*}
$$

be the vector bundle associated to the principal K-bundle E_{K}^{0} (see (2.4)) for the K module \mathfrak{g}^{\perp}. Note that the G-invariant orthogonal decomposition of $\operatorname{End}_{\mathbb{C}}(V)$ in (2.15) induces an orthogonal decomposition

$$
\begin{equation*}
\operatorname{End}(W)=\operatorname{ad}\left(E_{G}^{0}\right) \oplus F_{0} \tag{2.17}
\end{equation*}
$$

Hence we have orthogonal decompositions
$A^{0,1}(E n d(W))=A^{0,1}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right) \oplus A^{0,1}\left(F_{0}\right)$ and $A^{1,0}(E n d(W))=A^{1,0}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right) \oplus A^{1,0}\left(F_{0}\right)$.
Let \mathcal{H} denote the trivial vector bundle over \mathcal{B}_{0} (see (2.8)) with fiber $A^{0,1}\left(F_{0}\right) \oplus A^{1,0}\left(F_{0}\right)$. Using the orthogonal decompositions in (2.18) it follows that the orthogonal complement of the differential

$$
\begin{equation*}
d \phi: T^{1,0} \mathcal{B}_{0} \longrightarrow \phi^{*} T^{1,0} \mathcal{B}_{W} \tag{2.19}
\end{equation*}
$$

is identified with the above defined vector bundle \mathcal{H} (here $T^{1,0}$ denotes the holomorphic tangent bundle).

On the other hand, $\mathcal{H} \subset \phi^{*} T^{1,0} \mathcal{B}_{W}$ is a holomorphic subbundle because the adjoint action of G on $\operatorname{End}_{\mathbb{C}}(V)$ preserves \mathfrak{g}^{\perp}. Consequently, the orthogonal complement $\mathcal{H}=d \phi\left(T^{1,0} \mathcal{B}_{0}\right)^{\perp} \subset \phi^{*} T^{1,0} \mathcal{B}_{W}$ (see (2.19)) is preserved by the Chern connection on the holomorphic Hermitian vector bundle $\phi^{*} T^{1,0} \mathcal{B}_{W}$. Since the Chern connection for a Kähler metric coincides with the Levi-Civita connection, it follows that $d \phi\left(T^{1,0} \mathcal{B}_{0}\right)^{\perp}$ is preserved by the connection on $\phi^{*} T^{1,0} \mathcal{B}_{W}$ obtained by pulling back the Levi-Civita connection on \mathcal{B}_{W}. In other words, the second fundamental form of the embedding ϕ vanishes. This completes the proof of the lemma.

Remark 2.2. Take any $z:=\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \in \mathcal{B}_{0}$ which is a Higgs G-bundle, meaning θ is holomorphic with respect to the holomorphic structure $\bar{\partial}_{E_{G}^{0}}$. The $\phi(z)$ is a Higgs vector bundle.

A connection on the principal G-bundle E_{G}^{0} decomposes the real tangent bundle $T^{\mathbb{R}} E_{G}^{0}$ into a direct sum of horizontal and vertical tangent bundles. Using this decomposition, the almost complex structures of G and X together produce an almost complex structure on E_{G}^{0}. Let $\bar{\partial}_{E_{G}^{0}}$ be a holomorphic structure on E_{G}^{0}. A connection ∇ on E_{G}^{0} is said to be compatible with $\bar{\partial}_{E_{G}^{0}}$ if the almost complex structure on E_{G}^{0} given by ∇ coincides with the one underlying the complex structure $\bar{\partial}_{E_{G}^{0}}$ on E_{G}^{0}.

Given a holomorphic structure $\bar{\partial}_{E_{G}^{0}}$ on E_{G}^{0}, there is a unique connection ∇ on E_{K}^{0} such that the connection on E_{G}^{0} induced by ∇ is compatible with $\bar{\partial}_{E_{G}^{0}}$; it is known as the Chern connection. On the other hand, given a connection ∇_{1} on E_{G}^{0}, there is a unique holomorphic structure $\bar{\partial}_{1}^{\prime}$ on E_{G}^{0} such that ∇_{1} is compatible with $\bar{\partial}_{1}^{\prime}$ (this is because $\operatorname{dim}_{\mathbb{C}} X=1$). Therefore, we have a canonical bijective correspondence between \mathcal{A}_{0} (see (2.6)) and the space of all connections on E_{K}^{0}. Similarly, we have a canonical bijective correspondence between $\mathcal{A}(W)$ (the space of all holomorphic structures on the vector bundle W in (2.9)) and the space of all connections on the principal \widetilde{K}-bundle

$$
\begin{equation*}
E_{\widetilde{K}}^{0}:=E_{K}^{0}(\widetilde{K})=E_{K}^{0} \times_{K} \widetilde{K} \longrightarrow X \tag{2.20}
\end{equation*}
$$

obtained by extending the structure group of E_{K}^{0} using the homomorphism $\rho: K \longrightarrow \widetilde{K}$.

The curvature of a connection ∇ will be denoted by $K(\nabla)$.
Let

$$
\begin{equation*}
\text { * : End }(W) \longrightarrow \operatorname{End}(W) \tag{2.21}
\end{equation*}
$$

be the conjugate linear automorphism that acts on the subbundle ad $\left(E_{\widetilde{K}}^{0}\right) \subset E n d(W)$ (see (2.20)) as multiplication by -1 ; since $\operatorname{End}(W)=\operatorname{ad}\left(E_{\widetilde{K}}^{0}\right) \oplus \sqrt{-1} \cdot \operatorname{ad}\left(E_{\widetilde{K}}^{0}\right)$, this condition uniquely determines the automorphism in (2.21).

Fix a Hermitian metric h_{0} on $T^{1,0} X$.
Let

$$
\mathrm{YMH}_{W}: \mathcal{B}_{W} \longrightarrow \mathbb{R}
$$

be the function defined by $\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \longmapsto\left\|K\left(\bar{\partial}_{E_{G}^{0}}\right)+\left[\theta, \theta^{*}\right]\right\|^{2}$, where $K\left(\bar{\partial}_{E_{G}^{0}}\right)$ is the curvature of the connection associated to $\bar{\partial}_{E_{G}^{0}}$, and the inner product on 2 -forms is defined using h and the inner product on the fibers of $\operatorname{End}(E)$. If locally $\theta=A \times d z$, then $\left[\theta, \theta^{*}\right]=\left(A A^{*}-A^{*} A\right) d z \wedge d \bar{z}$; see [19] for more on this function YMH_{W}.

Let $*: \operatorname{ad}\left(E_{G}^{0}\right) \longrightarrow \operatorname{ad}\left(E_{G}^{0}\right)$ be the conjugate linear automorphism that acts on the subbundle $\operatorname{ad}\left(E_{K}^{0}\right) \subset \operatorname{ad}\left(E_{G}^{0}\right)$ (see (2.4)) as multiplication by -1 . Note that this automorphism coincides with the restriction of the automorphism in (2.21). Consider \mathcal{B}_{0} defined in (2.8). Let

$$
\begin{equation*}
\mathrm{YMH}_{G}: \mathcal{B}_{0} \longrightarrow \mathbb{R} \tag{2.22}
\end{equation*}
$$

be the function defined by $\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \longmapsto\left\|K\left(\bar{\partial}_{E_{G}^{0}}\right)+\left[\theta, \theta^{*}\right]\right\|^{2}$; as before, $K\left(\bar{\partial}_{E_{G}^{0}}\right)$ is the curvature of the connection associated to the holomorphic structure $\bar{\partial}_{E_{G}^{0}}$.

We first note that

$$
\begin{equation*}
\mathrm{YMH}_{G}=\mathrm{YMH}_{W} \circ \phi, \tag{2.23}
\end{equation*}
$$

where ϕ is the function constructed in (2.14). Let $d \mathrm{YMH}_{W}$ be the smooth exact 1-form on \mathcal{B}_{W}. The following lemma shows that the normal vectors to $T^{\mathbb{R}} \mathcal{B}_{0}$ for the embedding ϕ in (2.14) are annihilated by the form $d \mathrm{YMH}_{W}$.

Lemma 2.3. For any point $x \in \mathcal{B}_{0}$, and any normal vector

$$
v \in\left(d \phi\left(T_{x}^{\mathbb{R}} \mathcal{B}_{0}\right)\right)^{\perp} \subset T_{\phi(x)}^{\mathbb{R}} \mathcal{B}_{W}
$$

the following holds:

$$
d \mathrm{YMH}_{W}(v)=0 .
$$

Proof. Take any pair $(v, w) \in A^{0,1}\left(F_{0}\right) \oplus A^{1,0}\left(F_{0}\right)$, where F_{0} is the vector bundle in (2.16). Take any $\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \in \mathcal{B}_{0}$. Let ∇ be the connection on E_{G}^{0} corresponding to the holomorphic structure $\bar{\partial}_{E_{G}^{0}}$. Therefore, the connection on E_{G}^{0} corresponding to the holomorphic structure $\bar{\partial}_{E_{G}^{0}}+t v$, where $t \in \mathbb{R}$, is $\nabla+t v-t v^{*}$. The automorphism in (2.21) preserves the orthogonal decomposition of $\operatorname{End}(W)$ in (2.17). Hence for $t \in \mathbb{R}$, all four $t v, t v^{*}, t w$ and $t w^{*}$ are 1 -forms with values in F_{0}. On the other hand, θ and θ^{*} are 1 -forms with values in $\operatorname{ad}\left(E_{G}^{0}\right)$.

Let ∇^{\prime} be the connection on the vector bundle W associated to E_{G}^{0} induced by the connection ∇ on E_{G}^{0}. So the curvature of ∇^{\prime} coincides with the curvature of ∇, in
particular, $K\left(\nabla^{\prime}\right)$ is a 2-form with values in $\operatorname{ad}\left(E_{G}^{0}\right)$. We note that

$$
K\left(\nabla^{\prime}+t v-t v^{*}\right)=K\left(\nabla^{\prime}\right)+t \nabla^{\prime}\left(v-v^{*}\right)+t^{2} C
$$

where C is independent of t. Since ∇^{\prime} is induced by a connection E_{G}^{0}, and the decomposition in (2.15) is preserved by the action of G, the connection ∇^{\prime} preserves the decomposition in (2.17). Hence $\nabla^{\prime}\left(v-v^{*}\right)$ is a 2 -form with values in F_{0}.

Using these and the fact that the decompositions in (2.18) are orthogonal, we have

$$
\left.\left(\frac{d}{d t}\left\|K\left(\nabla^{\prime}+t v-t v^{*}\right)+\left[\theta+t w, \theta^{*}+t w^{*}\right]\right\|^{2}\right)\right|_{t=0}=0
$$

This completes the proof of the lemma.
Let

$$
\begin{equation*}
\Psi_{W}: \mathcal{B}_{W} \longrightarrow T^{\mathbb{R}} \mathcal{B}_{W} \tag{2.24}
\end{equation*}
$$

be the gradient vector field on \mathcal{B}_{W} for the function YMH_{W}. From Lemma 2.3 and (2.23) we have the following corollary:
Corollary 2.4. The restriction of the vector field Ψ_{W} to $\phi\left(\mathcal{B}_{0}\right)$ (see (2.14)) lies in the image of the differential $d \phi$ in (2.19). Furthermore, this restriction coincides with the gradient vector field for the function YMH_{G}.

3. Closedness of the embedding

For a complex vector space V^{\prime}, let $P\left(V^{\prime}\right)$ denote the projective space of lines in V^{\prime}. Any linear action on V^{\prime} induces an action on $P\left(V^{\prime}\right)$.

Consider the closed subgroup $\rho(G) \subset \mathrm{GL}(V)$ in (2.2). A theorem of C. Chevalley (see [12, p. 80]) says that there is a finite dimensional left GL($V)$-module V_{1} and a line

$$
\begin{equation*}
\ell \subset V_{1} \tag{3.1}
\end{equation*}
$$

such that $\rho(G)$ is exactly the isotropy subgroup, for the action of GL (V) on $P\left(V_{1}\right)$, of the point in $P\left(V_{1}\right)$ representing the line ℓ.

Let $E_{\mathrm{GL}(V)}:=E_{G}^{0}(\mathrm{GL}(V))=E_{G}^{0} \times_{G} \mathrm{GL}(V) \longrightarrow X$ be the principal $\mathrm{GL}(V)$-bundle obtained by extending the structure group of E_{G}^{0} (see (2.5)) by the homomorphism ρ in (2.2). Therefore, the vector bundle $E_{\mathrm{GL}(V)}(V)$, associated to $E_{\mathrm{GL}(V)}$ by the standard action of $\mathrm{GL}(V)$ on V, is identified with the vector bundle W in (2.9). Let

$$
\begin{equation*}
\mathcal{V}_{1}:=E_{\mathrm{GL}(V)}\left(V_{1}\right) \longrightarrow X \tag{3.2}
\end{equation*}
$$

be the vector bundle associated to $E_{\mathrm{GL}(V)}$ for the above $\mathrm{GL}(V)$-module V_{1}. Since

$$
\mathcal{V}_{1}=E_{G}^{0}\left(V_{1}\right)
$$

and the action of G on V_{1} preserves the line ℓ in (3.1), the line ℓ defines a C^{∞} line subbundle

$$
\begin{equation*}
L_{0} \subset \mathcal{V}_{1} \tag{3.3}
\end{equation*}
$$

Take any holomorphic structure $\bar{\partial}_{W} \in \mathcal{A}(W)$ on the vector bundle W (see (2.13)). The holomorphic structure $\bar{\partial}_{W}$ on W defines a holomorphic structure on the principal $\mathrm{GL}(V)$-bundle $E_{\mathrm{GL}(V)}$ corresponding to W. Hence $\bar{\partial}_{W}$ defines a holomorphic structure
on the associated vector bundle \mathcal{V}_{1} in (3.2). This holomorphic structure on \mathcal{V}_{1} will be denoted by $\bar{\partial}_{1}^{\prime}$.

Since $\rho(G)$ is the isotropy subgroup of the point in $P\left(V_{1}\right)$ representing the line ℓ for the action of $\mathrm{GL}(V)$ on $P\left(V_{1}\right)$, we conclude that $\bar{\partial}_{W}$ lies in $\delta\left(\mathcal{A}_{0}\right)$ (see (2.13)) if and only if the line subbundle L_{0} in (3.3) is holomorphic with respect to the holomorphic structure $\bar{\partial}_{1}^{\prime}$ on \mathcal{V}_{1}.

Therefore, we have the following lemma:
Lemma 3.1. The embedding δ in (2.13) is closed.
The action of $\mathrm{GL}(V)$ on V_{1} gives a homomorphism

$$
\operatorname{End}_{\mathbb{C}}(V) \longrightarrow \operatorname{End}_{\mathbb{C}}\left(V_{1}\right)
$$

of Lie algebras. This homomorphism in turn gives a homomorphism of vector bundles

$$
\begin{equation*}
\operatorname{End}(W) \longrightarrow \operatorname{End}\left(\mathcal{V}_{1}\right) \tag{3.4}
\end{equation*}
$$

where \mathcal{V}_{1} is the vector bundle in (3.2).
Take any $\theta \in A^{1,0}(\operatorname{End}(W))$. Let $\theta^{\prime} \in A^{1,0}\left(\operatorname{End}\left(\mathcal{V}_{1}\right)\right)$ be the section constructed from θ using the homomorphism in (3.4). Since $\rho(G)$ is the isotropy subgroup of the point in $P\left(V_{1}\right)$ representing the line ℓ for the action of $\mathrm{GL}(V)$ on $P\left(V_{1}\right)$, we conclude the following: The section θ lies in the image of the natural homomorphism

$$
A^{1,0}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right) \longrightarrow A^{1,0}(\operatorname{End}(W))
$$

if and only if $\theta^{\prime}\left(L_{0}\right) \in A^{1,0}\left(L_{0}\right)$, where L_{0} is the subbundle in (3.3).
Therefore, using Lemma 3.1, we have following proposition:
Proposition 3.2. The embedding ϕ in (2.14) is closed.
Let

$$
\begin{equation*}
\mathcal{S}\left(E_{G}^{0}\right) \subset \mathcal{B}_{0} \tag{3.5}
\end{equation*}
$$

be the subset consisting of all pairs that are Higgs G-bundles. So a pair

$$
\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \in \mathcal{A}_{0} \times A^{1,0}\left(\operatorname{ad}\left(E_{G}^{0}\right)\right)=\mathcal{B}_{0}
$$

lies in $\mathcal{S}\left(E_{G}^{0}\right)$ if and only if the section θ is holomorphic with respect to the holomorphic structure on $\operatorname{ad}\left(E_{G}^{0}\right) \otimes K_{X}$ defined by $\bar{\partial}_{E_{G}^{0}}$.

Consider the gradient flow on \mathcal{B}_{0} for the function YMH_{G} defined in (2.22). The following lemma shows that this flow preserves the subset $\mathcal{S}\left(E_{G}^{0}\right)$ defined in (3.5).

Lemma 3.3. Take any $z:=\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \in \mathcal{S}\left(E_{G}^{0}\right)$. Let

$$
\gamma_{z}: \mathbb{R} \longrightarrow \mathcal{B}_{0}
$$

be the integral curve for the gradient flow on \mathcal{B}_{0} for the function YMH_{G} such that $\gamma_{z}(0)=$ z. Then

$$
\gamma_{z}(t) \in \mathcal{S}\left(E_{G}^{0}\right)
$$

for all $t \in \mathbb{R}$.

Proof. Consider \mathcal{B}_{W} defined in (2.12). Let

$$
\mathcal{S}(W) \subset \mathcal{B}_{W}
$$

be the subset consisting of all pairs $\left(\bar{\partial}^{\prime}, \theta\right) \in \mathcal{A}(W) \times A^{1,0}(\operatorname{End}(W))$ such that θ is holomorphic with respect to the holomorphic structure given by $\bar{\partial}^{\prime}$. For the map ϕ in (2.14),

$$
\phi\left(\mathcal{S}\left(E_{G}^{0}\right)\right) \subset \mathcal{S}(W)
$$

(see Remark 2.2).
In view of Corollary 2.4, to prove the lemma it suffices to show that the vector field Ψ_{W} (defined in (2.24)) preserves the subset $\mathcal{S}(W)$. But this is proved in [19]; from [19, Lemma 3.10] and the proof of Proposition 3.2 in [19, pp. 295-297] it follows that the flow Ψ_{W} is generated by the action of the complex gauge group, hence $\mathcal{S}(W)$ is preserved by the flow. This completes the proof of the lemma.

Theorem 3.4. The integral curve γ_{z} for the gradient flow of YMH_{G} on \mathcal{B}_{0} with initial condition $z:=\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \in \mathcal{S}\left(E_{G}^{0}\right)$ converges to a limit in $\mathcal{S}\left(E_{G}^{0}\right)$.

Proof. Theorem 1.1 in [19] shows that the gradient flow of YMH_{W} on the space \mathcal{B}_{W} with initial conditions in $\mathcal{S}(W)$ converges to a limit in $\mathcal{S}(W)$. Moreover, Corollary 2.4 and Lemma 3.3 together with the uniqueness of the flow from Proposition 3.2 in [19] give the following: when the initial conditions are in $\phi\left(\mathcal{S}\left(E_{G}^{0}\right)\right)$, then the flow preserves the space $\phi\left(\mathcal{S}\left(E_{G}^{0}\right)\right)$. Combining these two facts, we see that because the embedding ϕ is closed by Proposition 3.2, the limit of the flow lies in $\phi\left(\mathcal{S}\left(E_{G}^{0}\right)\right)$. Since $\phi\left(\gamma_{z}\right)$ coincides with the gradient flow of YMH_{W} with initial conditions in $\phi\left(\mathcal{S}\left(E_{G}^{0}\right)\right)$ by Corollary 2.4, we conclude that $\lim _{t \rightarrow \infty} \gamma_{z}(t)$ exists, and it is in $\mathcal{S}\left(E_{G}^{0}\right)$.

4. Reduction of structure group

As before, G is a connected reductive linear algebraic group defined over \mathbb{C}.
See [3], [6] for the definitions of semistable, stable and polystable Higgs G-bundles.
Lemma 4.1. Let $\left(E_{G}, \theta\right)$ be a semistable Higgs G-bundle on X. The Higgs vector bundle $\left(\operatorname{ad}\left(E_{G}\right), \varphi\right)$ is semistable, where φ is the Higgs field on $\operatorname{ad}\left(E_{G}\right)$ defined by θ using the Lie algebra structure of the fibers of $\operatorname{ad}\left(E_{G}\right)$.

Proof. This follows from [3, p. 37, Lemma 3.6], but some explanations are necessary.
Let $Z(G) \subset G$ be the connected component of the center of G containing the identity element. Define

$$
G^{\prime}:=G / Z(G)
$$

Let $\left(E_{G^{\prime}}, \theta^{\prime}\right)$ be the Higgs G^{\prime}-bundle over X obtained by extending the structure group of (E_{G}, θ) using the quotient map $G \longrightarrow G^{\prime}$. Since $\left(E_{G}, \theta\right)$ is semistable, it follows immediately that the Higgs G^{\prime}-bundle $\left(E_{G^{\prime}}, \theta^{\prime}\right)$ is semistable. Let φ^{\prime} be the Higgs field on the adjoint vector bundle $\operatorname{ad}\left(E_{G^{\prime}}\right)$ induced by θ^{\prime}. Since $\left(E_{G^{\prime}}, \theta^{\prime}\right)$ is semistable, and the group G^{\prime} does not have any nontrivial character, the Higgs vector bundle $\left(\operatorname{ad}\left(E_{G^{\prime}}\right), \varphi^{\prime}\right)$ is semistable [3, p. 37, Lemma 3.6] (see also [3, p. 26, Proposition 2.4]). We have

$$
\left(\operatorname{ad}\left(E_{G}\right), \varphi\right)=\left(\operatorname{ad}\left(E_{G^{\prime}}\right), \varphi^{\prime}\right) \oplus(X \times z(\mathfrak{g}), 0)
$$

where $z(\mathfrak{g})$ is the Lie algebra of $Z(G)$, and $X \times z(\mathfrak{g})$ is the trivial vector bundle over X with fiber $z(\mathfrak{g})$. Hence $\left(\operatorname{ad}\left(E_{G}\right), \varphi\right)$ is semistable; note that degree $\left(\operatorname{ad}\left(E_{G}\right)\right)=0=$ degree $\left(\operatorname{ad}\left(E_{G^{\prime}}\right)\right)$. This completes the proof of the lemma.

Let $\left(E_{G}, \theta\right)$ be a Higgs G-bundle on X and $H \subset G$ a closed algebraic subgroup. A reduction of structure group of the $\operatorname{Higgs} G$-bundle $\left(E_{G}, \theta\right)$ to H is a holomorphic reduction of structure group $E_{H} \subset E_{G}$ to H over X such that θ lies in the image of the homomorphism $H^{0}\left(X, \operatorname{ad}\left(E_{H}\right) \otimes K_{X}\right) \longrightarrow H^{0}\left(X, \operatorname{ad}\left(E_{G}\right) \otimes K_{X}\right)$.

Given a Higgs G-bundle $\left(E_{G}, \theta\right)$, there is a canonical Harder-Narasimhan reduction of structure group of $\left(E_{G}, \theta\right)$ to a parabolic subgroup P of G [10] (the method in [10] is based on [4]). If $\left(E_{G}, \theta\right)$ is semistable, then $P=G$.

We recall the definition of the Harder-Narasimhan reduction of a Higgs G-bundle.
Let $\left(E_{G}, \theta\right)$ be a Higgs G-bundle on X. Then there is a parabolic subgroup $P \subset G$ and a reduction of structure group E_{P} of $\left(E_{G}, \theta\right)$ to P such that
(1) the principal $L(P)$-bundle $E_{L(P)}:=E_{P} \times_{P} L(P) \longrightarrow X$, where $L(P)$ is the Levi quotient of P, is semistable, and
(2) for any nontrivial character χ of P which is a nonnegative linear combination of simple roots (with respect to some Borel subgroup contained in P) and is trivial on the center of G, the associated line bundle $E_{P}(\chi) \longrightarrow X$ is of positive degree.

The above pair $\left(P, E_{P}\right)$ is unique in the following sense: for any other pair ($P_{1}, E_{P_{1}}$) satisfying the above two conditions, there is some $g \in G$ such that

- $P_{1}=g^{-1} P g$, and
- $E_{P_{1}}=E_{P} g$.
(See [10], [4].)
A semistable vector bundle $E \longrightarrow X$ admits a filtration of subbundles

$$
\begin{equation*}
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots \subset E_{n-1} \subset E_{n}=E \tag{4.1}
\end{equation*}
$$

such that $E_{i} / E_{i-1}, 1 \leq i \leq n$, is the maximal polystable subbundle of E / E_{i-1} with

$$
\frac{\operatorname{degree}\left(E_{i} / E_{i-1}\right)}{\operatorname{rank}\left(E_{i} / E_{i-1}\right)}=\frac{\operatorname{degree}(E)}{\operatorname{rank}(E)}
$$

(see [13, p. 23, Lemma 1.5.5]); this filtration is called the socle filtration. In [1], this was generalized to semistable principal G-bundles (see [1, p. 218, Proposition 2.12]). In Theorem 4.4 proved below, this is further generalized to semistable Higgs G-bundles.

We will define admissible reductions of a Higgs G-bundle. See [5, pp. 3998-3999] for the definition of an admissible reduction of structure group of a principal G-bundle.
Definition 4.2. An admissible reduction of structure group of a Higgs G-bundle $\left(E_{G}, \theta\right)$ to a parabolic subgroup $P \subset G$ is a reduction of structure group E_{P} of $\left(E_{G}, \theta\right)$ to P such that $E_{P} \subset E_{G}$ is an admissible reduction of E_{G}.

Let $\left(E_{G}, \theta\right)$ be a Higgs G-bundle on X. Let $E_{P}^{\prime} \subset E_{G}$ be a reduction of structure group of $\left(E_{G}, \theta\right)$ to a parabolic subgroup P of G. So θ is a section of $\operatorname{ad}\left(E_{P}^{\prime}\right) \otimes K_{X}$. Let $L(P)$ be the Levi quotient of P. Let $E_{P}^{\prime}(L(P))$ be the principal $L(P)$-bundle over X obtained by extending the structure group of E_{P}^{\prime} using the quotient map $P \longrightarrow L(P)$.

The quotient homomorphism $\operatorname{Lie}(P) \longrightarrow \operatorname{Lie}(L(P))$ induces a homomorphism of adjoint bundles

$$
\operatorname{ad}\left(E_{P}^{\prime}\right) \longrightarrow \operatorname{ad}\left(E_{P}^{\prime}(L(P))\right) .
$$

Using this homomorphism of vector bundles, the section θ of $\operatorname{ad}\left(E_{P}^{\prime}\right) \otimes K_{X}$ gives a holomorphic section of $\operatorname{ad}\left(E_{P}^{\prime}(L(P))\right) \otimes K_{X}$. In other words, θ gives a Higgs field on $E_{P}^{\prime}(L(P))$. This Higgs field on $E_{P}^{\prime}(L(P))$ will be denoted by θ^{\prime}.

Let $\left(E_{G}, \theta\right)$ be a semistable Higgs G-bundle on X which is not polystable. Let $Q \subsetneq$ G be a proper parabolic subgroup which is maximal among all the proper parabolic subgroups P such that $\left(E_{G}, \theta\right)$ has an admissible reduction of structure group $E_{P}^{\prime} \subset E_{G}$ (see Definition 4.2) for which the associated Higgs $L(P)$-bundle $\left(E_{P}^{\prime}(L(P)), \theta^{\prime}\right)$ defined above is polystable.

Definition 4.3. An admissible reduction of structure group of $\left(E_{G}, \theta\right)$ to Q

$$
E_{Q} \subset E_{G}
$$

will be called a socle reduction if the associated Higgs $L(Q)$-bundle $\left(E_{Q}(L(Q)), \theta^{\prime}\right)$ is polystable, where $L(Q)$ is the Levi quotient of Q.

Theorem 4.4. Let $\left(E_{G}, \theta\right)$ be a semistable Higgs G-bundle on X which is not polystable. Then $\left(E_{G}, \theta\right)$ admits a socle reduction. If $\left(Q, E_{Q}\right)$ and $\left(Q_{1}, E_{Q_{1}}\right)$ are two socle reductions of $\left(E_{G}, \theta\right)$, then there is some $g \in G$ such that $Q_{1}=g^{-1} Q g$, and $E_{Q_{1}}=E_{Q} g$.

Proof. First note that the construction of the socle filtration of a semistable vector bundle extends to semistable Higgs bundles; indeed, the proof in [13, p. 23, Lemma 1.5.5] goes through in this case also. Therefore, if (E, θ) is a semistable Higgs vector bundle on X which is not polystable, there is filtration of subbundles

$$
\begin{equation*}
0 \subset E_{1} \subset E_{2} \subset \cdots \subset E_{n-1} \subset E_{n}=E \tag{4.2}
\end{equation*}
$$

such that

$$
\begin{equation*}
\theta\left(E_{i}\right) \subset E_{i} \otimes K_{X} \tag{4.3}
\end{equation*}
$$

for all $i \in[1, n]$, and $\left(E_{i} / E_{i-1}, \theta_{i}^{\prime}\right)$ is the unique maximal polystable Higgs subbundle of the Higgs bundle $\left(E / E_{i-1}, \theta_{i}^{\prime \prime}\right)$ such that

$$
\frac{\operatorname{degree}\left(E_{i} / E_{i-1}\right)}{\operatorname{rank}\left(E_{i} / E_{i-1}\right)}=\frac{\operatorname{degree}(E)}{\operatorname{rank}(E)},
$$

where θ_{i}^{\prime} and $\theta_{i}^{\prime \prime}$ are the Higgs fields on E_{i} / E_{i-1} and E / E_{i-1} respectively induced by θ (the condition in (4.3) ensures that θ induces Higgs fields on both E_{i} / E_{i-1} and E / E_{i-1}).

Let $\operatorname{ad}\left(E_{G}\right) \longrightarrow X$ be the adjoint bundle of E_{G}. Let φ be the Higgs field on $\operatorname{ad}\left(E_{G}\right)$ defined by θ. From Lemma 4.1 we know that the Higgs vector bundle $\left(\operatorname{ad}\left(E_{G}\right), \varphi\right)$ is semistable. We note if $\left(\operatorname{ad}\left(E_{G}\right), \varphi\right)$ is polystable, then $\left(E_{G}, \theta\right)$ is polystable. Since $\left(E_{G}, \theta\right)$ is not polystable, we conclude that the Higgs vector bundle $\left(\operatorname{ad}\left(E_{G}\right), \varphi\right)$ is not polystable. Let

$$
\begin{equation*}
0=E_{0} \subset E_{1} \subset E_{2} \subset \cdots \subset E_{m-1} \subset E_{m}=\operatorname{ad}\left(E_{G}\right) \tag{4.4}
\end{equation*}
$$

be the socle filtration for $\left(\operatorname{ad}\left(E_{G}\right), \varphi\right)$ (see (4.2)).

Fix a G-invariant nondegenerate symmetric bilinear form B_{0} on the Lie algebra \mathfrak{g} of G; such a form exists because G is reductive. This form B_{0} defines nondegenerate symmetric bilinear forms on the fibers of $\operatorname{ad}\left(E_{G}\right)$. So we get an isomorphism

$$
\begin{equation*}
\operatorname{ad}\left(E_{G}\right) \xrightarrow{\sim} \operatorname{ad}\left(E_{G}\right)^{*} . \tag{4.5}
\end{equation*}
$$

Let φ^{*} be the dual Higgs field on $\operatorname{ad}\left(E_{G}\right)^{*}$ defined by φ. The isomorphism in (4.5) clearly takes φ to φ^{*}. In particular, $\left(\operatorname{ad}\left(E_{G}\right), \varphi\right)$ is self-dual.

From the uniqueness of the socle filtration it follows that the filtration in (4.4) is selfdual. Also, the integer m in (4.4) is odd. The tensor product of two semistable Higgs bundles on X is again semistable [18, p. 38, Corollary 3.8]. Using these observations it follows that

- the subbundle $E_{\frac{m+1}{2}}$ is closed under the Lie bracket operation on the fibers of $\operatorname{ad}\left(E_{G}\right)$,
- the fibers of $E_{\frac{m-1}{2}}$ are ideals in the fibers of $E_{\frac{m+1}{2}}$, and are nilpotent,
- the fibers of the quotient $E_{\frac{m+1}{2}} / E_{\frac{m-1}{2}}$ are reductive, and
- the Higgs field θ is a section of $E_{\frac{m+1}{2}} \otimes K_{X}$.
(see [1, p. 218, Proposition 2.12]). It should be clarified that to prove the above statements we need the following: for any two polystable Higgs vector bundles $\left(W_{1}, \varphi_{1}\right)$ and $\left(W_{2}, \varphi_{2}\right)$ over X, the tensor product $\left(W_{1} \otimes W_{2}, \varphi_{1} \otimes \mathrm{Id}_{W_{2}}+\mathrm{Id}_{W_{1}} \otimes \varphi_{2}\right)$ is also a polystable Higgs vector bundle. To prove that $\left(W_{1} \otimes W_{2}, \varphi_{1} \otimes \operatorname{Id}_{W_{2}}+\operatorname{Id}_{W_{1}} \otimes \varphi_{2}\right)$ is polystable, let ∇_{1} and ∇_{2} be the Hermitian-Yang-Mills connections on $\left(W_{1}, \varphi_{1}\right)$ and $\left(W_{2}, \varphi_{2}\right)$ respectively (see [18, p. 19, Theorem $1(2)]$). Then the induced connection $\nabla_{1} \otimes \operatorname{Id}_{W_{2}}+\operatorname{Id}_{W_{1}} \otimes \nabla_{2}$ on $W_{1} \otimes W_{2}$ is a Hermitian-Yang-Mills connection for $\left(W_{1} \otimes W_{2}, \varphi_{1} \otimes \mathrm{Id}_{W_{2}}+\mathrm{Id}_{W_{1}} \otimes \varphi_{2}\right)$. Hence $\left(W_{1} \otimes W_{2}, \varphi_{1} \otimes \operatorname{Id}_{W_{2}}+\operatorname{Id}_{W_{1}} \otimes \varphi_{2}\right)$ is polystable [18, p. 19, Theorem 1(2)].

From the above statements it follows that $E_{\frac{m+1}{2}}$ is a Lie algebra subbundle of the Lie algebra bundle $\operatorname{ad}\left(E_{G}\right)$ such that the fibers of $E_{\frac{m+1}{2}}^{2}$ are parabolic subalgebras.

The fibers of $\operatorname{ad}\left(E_{G}\right)$ are identified with the Lie algebra \mathfrak{g} up to an inner automorphism. More precisely, for any point $x \in X$, and any point z in the fiber $\left(E_{G}\right)_{x}$ of E_{G}, we have an isomorphism

$$
\begin{equation*}
\sigma_{z}: \mathfrak{g} \longrightarrow \operatorname{ad}\left(E_{G}\right)_{x} \tag{4.6}
\end{equation*}
$$

that sends any $v \in \mathfrak{g}$ to the image of (z, v) in $\operatorname{ad}\left(E_{G}\right)_{x}$ (recall that $\operatorname{ad}\left(E_{G}\right)$ is a quotient of $\left.E_{G} \times \mathfrak{g}\right)$. For any $g \in G$, the isomorphisms σ_{z} and $\sigma_{z g}$ differ by the inner automorphism $\operatorname{Ad}(g)$ of \mathfrak{g}. Let $Q \subset G$ be a parabolic subgroup in the conjugacy class of parabolic subgroups whose Lie algebras are identified with the fibers of $E_{\frac{m+1}{2}}$ by some isomorphism constructed in (4.6). The normalizer of any parabolic subgroup ${ }^{2} P \subset G$ coincides with P. In particular, the normalizer of $Q \subset G$ is Q itself. Hence the subalgebra bundle $E_{\frac{m+1}{2}} \subset \operatorname{ad}\left(E_{G}\right)$ gives a holomorphic reduction of structure group $E_{Q} \subset E_{G}$ such that the subbundle $\operatorname{ad}\left(E_{Q}\right) \subset \operatorname{ad}\left(E_{G}\right)$ coincides with $E_{\frac{m+1}{2}}$. For any point $x \in X$, the fiber $\left(E_{Q}\right)_{x} \subset\left(E_{G}\right)_{x}$ consists of all points $z \in\left(E_{G}\right)_{x}$ such that the isomorphism σ_{z} in (4.6) takes $\operatorname{Lie}(Q)$ to $\left(E_{\frac{m+1}{2}}\right)_{x}$.

Since $\operatorname{ad}\left(E_{Q}\right)=E_{\frac{m+1}{2}}$, and the Higgs field θ is a section of $E_{\frac{m+1}{2}} \otimes K_{X}$, we conclude that E_{Q} is a reduction of structure group of the $\operatorname{Higgs} G$-bundle $\left(E_{G}, \theta\right)$. It is straight-forward to check that E_{Q} is a socle reduction of $\left(E_{G}, \theta\right)$.

Given any socle reduction $E_{Q^{\prime}}$ of $\left(E_{G}, \theta\right)$, it can be shown that the adjoint bundle $\operatorname{ad}\left(E_{Q^{\prime}}\right)$ coincides with the subbundle $E_{\frac{m+1}{2}}$ in (4.4). From this the uniqueness statement in the theorem follows. This completes the proof of the theorem.

For a polystable Higgs G-bundle $\left(E_{G}, \theta\right)$ the socle reduction is defined to be E_{G} itself.
Given a Higgs G-bundle, combining the Harder-Narasimhan reduction with the socle reduction we get a new Higgs G-bundle which will be described below.

Let $\left(E_{G}, \theta\right)$ be a Higgs G-bundle. Let $\left(E_{P}, \theta_{P}\right)$ be the Harder-Narasimhan reduction of $\left(E_{G}, \theta\right)$. If $\left(E_{G}, \theta\right)$ is semistable, then $P=G$, and $\left(E_{P}, \theta_{P}\right)=\left(E_{G}, \theta\right)$.

Let $L(P)$ be the Levi quotient of P. Let

$$
\begin{equation*}
\left(E_{L(P)}, \theta_{L(P)}\right) \tag{4.7}
\end{equation*}
$$

be the Higgs $L(P)$-bundle obtained by extending the structure group of the above Higgs P-bundle (E_{P}, θ_{P}) using the quotient map $P \longrightarrow L(P)$. From the definition of a HarderNarasimhan reduction we know that the Higgs $L(P)$-bundle $\left(E_{L(P)}, \theta_{L(P)}\right)$ is semistable. Therefore, $\left(E_{L(P)}, \theta_{L(P)}\right)$ has a unique socle reduction by Theorem 4.4. Let

$$
E_{H} \subset E_{L(P)}
$$

be the socle reduction of $\left(E_{L(P)}, \theta_{L(P)}\right)$. So H is a Levi subgroup of a parabolic subgroup of $L(P)$; the Higgs field on E_{H} induced by $\theta_{L(P)}$ will be denoted by θ_{H} (see Definition 4.3).

The Levi quotient $L(P)$ is identified with all the Levi factors of P, and H is a subgroup of $L(P)$. Therefore, H becomes a subgroup of G after fixing a Levi factor of P. Let

$$
\begin{equation*}
\left(E_{G}^{\prime}, \theta^{\prime}\right) \tag{4.8}
\end{equation*}
$$

be the Higgs G-bundle obtained by extending the structure group of the Higgs H-bundle $\left(E_{H}, \theta_{H}\right)$ using the inclusion of H in G.

Take any

$$
\begin{equation*}
z:=\left(\bar{\partial}_{E_{G}^{0}}, \theta\right) \in \mathcal{S}\left(E_{G}^{0}\right) \tag{4.9}
\end{equation*}
$$

(see (3.5)). Let $\left(E_{G}, \theta\right)$ be the Higgs G-bundle defined by the holomorphic structure $\bar{\partial}_{E_{G}^{0}}$ on E_{G}^{0} together with the section θ in (4.9). Let $\left(E_{G}^{\prime}, \theta^{\prime}\right)$ be the new Higgs G-bundle constructed in (4.8) from $\left(E_{G}, \theta\right)$.

Lemma 4.5. Let γ_{z} be the integral curve for the gradient flow of YMH_{G} on \mathcal{B}_{0} with initial condition z (see (4.9)). Let

$$
\left(\bar{\partial}_{1}, \theta_{1}\right)=\lim _{t \rightarrow \infty} \gamma_{z}(t) \in \mathcal{S}\left(E_{G}^{0}\right)
$$

be the limit in Theorem 3.4. Then the Higgs G-bundle defined by $\left(\bar{\partial}_{1}, \theta_{1}\right)$ is holomorphically isomorphic to the Higgs G-bundle $\left(E_{G}^{\prime}, \theta^{\prime}\right)$ constructed above.

Proof. For Higgs vector bundles this was proved in [19] (see [19, p. 325, Theorem 5.3]). Let $\left(E_{G}, \theta\right)$ be the Higgs G-bundle defined by z in (4.9). Let $\left(\operatorname{ad}\left(E_{G}\right), \varphi\right)$ be the corresponding Higgs vector bundle defined by the Higgs field on the adjoint vector bundle ad $\left(E_{G}\right)$ induced by θ.

Recall that the Harder-Narasimhan reduction of the Higgs G-bundle (E_{G}, θ) is constructed using the Harder-Narasimhan filtration of the Higgs vector bundle $\left(\operatorname{ad}\left(E_{G}\right), \varphi\right)$. Let $\left(E_{L(P)}, \theta_{L(P)}\right)$ be the semistable principal Higgs bundle constructed as in (4.7) from the Harder-Narasimhan reduction of $\left(E_{G}, \theta\right)$. Recall that the socle reduction of a semistable Higgs $L(P)$-bundle $\left(E_{L(P)}, \theta_{L(P)}\right)$ is constructed using the socle filtration of the adjoint vector bundle $\operatorname{ad}\left(E_{L(P)}\right)$ equipped with the Higgs field induced by $\theta_{L(P)}$. From these constructions it can be deduced that the Harder-Narasimhan-socle filtration of the Higgs vector bundle $\left(\operatorname{ad}\left(E_{G}\right), \varphi\right)$ is compatible with the filtration of $\operatorname{ad}\left(E_{G}\right)$ obtained from $\left(E_{L(P)}, \theta_{L(P)}\right)$. Using this, the lemma follows.

References

[1] B. Anchouche and I. Biswas, Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. Jour. Math. 123 (2001), 207-228.
[2] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615.
[3] I. Biswas and T. L. Gómez, Connections and Higgs fields on a principal bundle, Ann. Glob. Anal. Geom. 33 (2008), 19-46.
[4] I. Biswas and Y. I. Holla, Harder-Narasimhan reduction of a principal bundle, Nagoya Math. Jour. 174 (2004), 201-223.
[5] I. Biswas and S. Subramanian, Flat holomorphic connections on principal bundles over a projective manifold, Trans. Amer. Math. Soc. 356 (2004), 3995-4018.
[6] I. Biswas and G. Schumacher, Yang-Mills equation for stable Higgs sheaves, Int. Jour. Math. 20 (2009), 541-556.
[7] G. D. Daskalopoulos, The topology of the space of stable bundles on a compact Riemann surface, Jour. Diff. Geom. 36 (1992), 699-746.
[8] G. D. Daskalopoulos, J. Weitsman, R. A. Wentworth and G. Wilkin, Morse theory and hyperkähler Kirwan surjectivity for Higgs bundles, arXiv:math/0701560.
[9] G. D. Daskalopoulos and R. A. Wentworth, Convergence properties of the Yang-Mills flow on Kähler surfaces, Jour. Reine Angew. Math. 575 (2004), 69-99.
[10] A. Dey and R. Parthasarathi, On Harder-Narasimhan reductions for Higgs principal bundles, Proc. Indian Acad. Sci. (Math. Sci.) 115 (2005), 127-146.
[11] R. Earl and F. C. Kirwan, Complete sets of relations in the cohomology rings of moduli spaces of holomorphic bundles and parabolic bundles over a Riemann surface, Proc. London Math. Soc. 89 (2004), 570-622.
[12] J. E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, Vol. 21, SpringerVerlag, New York, Heidelberg, Berlin, 1987.
[13] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg \& Sohn, Braunschweig, 1997.
[14] L. C. Jeffrey and F. C. Kirwan, Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. of Math. 148 (1998), 109-196.
[15] F. C. Kirwan, On the homology of compactifications of moduli spaces of vector bundles over a Riemann surface, Proc. London Math. Soc. 53 (1986), 237-266.
[16] F. C. Kirwan, The cohomology rings of moduli spaces of bundles over Riemann surfaces, Jour. Amer. Math. Soc. 5 (1992), 853-906.
[17] J. Råde, On the Yang-Mills heat equation in two and three dimensions, Jour. Reine Angew. Math. 431 (1992), 123-163.
[18] C. T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95.
[19] G. Wilkin, Morse theory for the space of Higgs bundles, Comm. Anal. Geom. 16 (2008), 283-332.
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

E-mail address: indranil@math.tifr.res.in

Department of Mathematics, University of Colorado, Boulder, CO 80309-0395, USA
E-mail address: graeme.wilkin@colorado.edu

[^0]: 2000 Mathematics Subject Classification. 14F05, 58E05.
 Key words and phrases. Higgs bundle, principal bundle, Morse flow.

