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INDRANIL BISWAS AND GRAEME WILKIN

Abstract. Fix a C∞ principal G–bundle E0
G on a compact connected Riemann surface

X, where G is a connected complex reductive linear algebraic group. We consider the
gradient flow of the Yang–Mills–Higgs functional on the cotangent bundle of the space
of all smooth connections on E0

G. We prove that this flow preserves the subset of Higgs
G–bundles, and, furthermore, the flow emanating from any point of this subset has a
limit. Given a Higgs G–bundle, we identify the limit point of the integral curve passing
through it. These generalize the results of the second named author on Higgs vector
bundles.

1. Introduction

The equivariant Morse theory of the Yang–Mills functional for vector bundles over a
compact Riemann surface has been an extremely useful tool in studying the topology of
the moduli space of semistable holomorphic bundles, beginning with the work of Atiyah
and Bott in [2], and continuing with the results of Kirwan on the intersection cohomology
in [15]. In the case where the rank and degree of the bundle are coprime, this program
was continued further by Kirwan in [16], by Jeffrey and Kirwan (who computed the
intersection pairings in [14]), and Earl and Kirwan in [11] who wrote down the relations
in the cohomology ring. As a result, via Morse theory we now have a complete description
of the cohomology of this space.

The convergence properties of the gradient flow of the Yang–Mills functional were first
studied by Daskalopoulos in [7] and R̊ade in [17]. R̊ade studies the more general problem
of the Yang–Mills flow on the space of connections on a 2 or 3 dimensional manifold, and
shows that the gradient flow converges to a critical point of the Yang–Mills functional.
When the base manifold is a compact Riemann surface, then R̊ade’s results show that
there exists a Morse stratification of the space of holomorphic bundles. In [7], Daskalopou-
los shows that this Morse stratification of the space of holomorphic bundles coincides with
the algebraically defined Harder–Narasimhan stratification used by Atiyah and Bott, and
uses this to obtain information about the homotopy type of the space of strictly stable
rank 2 bundles.

The analytically more complicated case of the Yang–Mills flow on the space of holo-
morphic structures on a Kähler surface (where bubbling occurs at isolated points on the
surface in the limit of the flow) was studied by Daskalopoulos and Wentworth in [9], who
showed that the algebraic and analytic stratifications coincide, and that the bubbling in
the limit of the flow is determined by the algebraic properties of the initial conditions.
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The main theorem of [19] extend the gradient flow results of Daskalopoulos and R̊ade to
the space of Higgs vector bundles over a compact Riemann surface, where the functional in
question is now the Yang–Mills–Higgs functional (see the definition below). These results
were then used in [8] to carry out an analog of Atiyah and Bott’s construction on the space
of rank 2 Higgs bundles, the first step in carrying out the Atiyah/Bott/Kirwan program
described above for Higgs bundles. The purpose of the current paper is to generalize the
gradient flow convergence theorem of [19] to the space of Higgs principal bundles over a
compact Riemann surface.

The main result of the paper can be stated as follows. Let X be a compact Riemann
surface. Given a C∞ vector bundle V on X, the space of C∞ forms of type (p , q) with
values in V will be denoted by Ap,q(V ). Let G a connected reductive linear algebraic
group over C, and fix a maximal compact subgroup K. Fix a principal K–bundle E0

K

with compact structure group K, and let E0
G denote the associated principal bundle

obtained by extending the structure group to G. Let A0 be the space of holomorphic
structures on E0

G, and consider the space B0 = A0 × A1,0(ad(E0
G)) (we show in Section 2

that this is the total space of the cotangent bundle of A0). A pair (∂E0
G

, θ) ∈ B0 is called

a Higgs pair if θ is holomorphic with respect to ∂E0
G
. The space of Higgs pairs is denoted

S(E0
G), and the Yang–Mills–Higgs functional on the space B0 is given by

YMHG : B0 → R

YMHG(∂E0
G
, θ) =

∥∥∥K(∂E0
G
) + [θ, θ∗]

∥∥∥2

,

where K(∂E0
G
) is the curvature of the connection on E0

K associated to the holomorphic

structure ∂E0
G

on E0
G (see Section 2 and the definition in equation (2.23) for full details of

this construction).

The notion of the Harder–Narasimhan reduction of a Higgs principal bundle is recalled
in Section 4, and we show that the definition of socle reduction for semistable vector
bundles (cf. [13]) extends to the semistable Higgs G–bundles. Combining the Harder–
Narasimhan reduction with the socle reduction gives the principal bundle analog of the
graded object of the Harder–Narasimhan–Seshadri filtration studied in [19]. The main
theorem of this paper generalizes the results of [19] to Higgs principal bundles.

Theorem 1.1. The gradient flow of YMHG with initial conditions (∂E0
G
, θ) in the space of

Higgs pairs on E0
G converges to a Higgs pair isomorphic to the pair obtained by combining

the socle reduction with the Harder–Narasimhan reduction of (∂E0
G
, θ).

The idea of the proof is to reduce to the case of Higgs vector bundles studied in [19].
Fix a C∞ principal G–bundle E0

G on a compact Riemann surface X. Given a faithful
representation ρ : G −→ GL(V ), let S(W ) denote the space of Higgs pairs on the
Hermitian vector bundle W = E0

G(V ) associated to E0
G via ρ. We show that the Yang–

Mills–Higgs flow on S(E0
G) is induced by the Yang–Mills–Higgs flow on S(W ), and that the

convergence of the flow on S(W ) (guaranteed by the results of [19]) implies that the flow
of YMHG on S(E0

G) converges also. The result then follows by showing that the Harder–
Narasimhan–socle reduction on W induces the Harder–Narasimhan–socle reduction on
E0

G.
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The paper is organized as follows. Section 2 contains the basic results necessary to the
rest of the paper: the construction of the map φ : S(E0

G) ↪→ S(W ) in equation (2.14),
and a proof that the Yang–Mills–Higgs flows coincide (Corollary 2.4). The main result of
Section 3 is Theorem 3.4, which shows that the flow of YMHG on S(E0

G) converges. The
results of the final section relate the Harder–Narasimhan–socle reduction of a Higgs pair
(∂E0

G
, θ) ∈ S(E0

G) to that of the associated Higgs pair φ(∂E0
G

, θ) ∈ S(W ).

2. The Yang–Mills–Higgs functional

Let G be a connected reductive linear algebraic group defined over C. Fix a maximal
compact subgroup

(2.1) K ⊂ G .

Fix a faithful representation

(2.2) ρ : G −→ GL(V ) ,

where V is a finite dimensional complex vector space. Fix a maximal compact subgroup

K̃

(2.3) ρ(K) ⊂ K̃ ⊂ GL(V )

of GL(V ).

The Lie algebra of G will be denoted by g. The group G has the adjoint action on g.
So g is a G–module.

Let X be a compact connected Riemann surface. Fix a C∞ principal K–bundle

(2.4) E0
K −→ X .

Let

(2.5) E0
G := E0

K(G) = E0
K ×K G −→ X

be the principal G–bundle obtained by extending the structure group of E0
K using the

inclusion map K ↪→ G. Let ad(E0
G) := E0

G(g) = E0
G ×G g be the adjoint bundle of E0

G.
In other words, ad(E0

G) is the vector bundle over X associated to the principal G–bundle
E0

G for the G–module g.

Let

(2.6) A0 := AE0
G

be the space of all holomorphic structures on the principal G–bundle E0
G. We note that

A0 is an affine space for the vector space A0,1(ad(E0
G)), which is the space of all smooth

(0 , 1)–forms with values in ad(E0
G). Fix a holomorphic structure

(2.7) ∂0 := ∂
0

E0
G

on E0
G. Using ∂0, the affine space A0 gets identified with A0,1(ad(E0

G)).

Let EG −→ X be a holomorphic principal G–bundle. A Higgs field on EG is a holo-
morphic section of ad(EG)⊗KX over X. A pair (EG , θ), where θ is a Higgs field on EG,
is called a Higgs G–bundle. A holomorphic structure on a principal G–bundle EG defines
a holomorphic structure on the vector bundle ad(EG)⊗KX . The Dolbeault operator on
ad(E0

G) ⊗ KX corresponding to any ∂E0
G
∈ A0 (see (2.6)) will also be denoted by ∂E0

G
.
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We note that a pair (∂E0
G

, θ) ∈ A0 × A1,0(ad(E0
G)) with ∂E0

G
(θ) = 0 defines a Higgs

G–bundle.

Define

(2.8) B0 := A0 × A1,0(ad(E0
G)) .

So if ∂E0
G
∈ A0, and θ is a Higgs field on the holomorphic principal G–bundle (E0

G , ∂E0
G
),

then (∂E0
G

, θ) ∈ B0. We will see later that B0 is the total space of the cotangent bundle
of the affine space A0.

Let

(2.9) W := E0
K(V ) −→ X

be the vector bundle associated to the principal K–bundle E0
K (see (2.4)) for the K–

module V in (2.2). Therefore, W is identified with the vector bundle associated to the
principal G–bundle E0

G in (2.5) for the G–module V . A holomorphic structure on E0
G de-

fines a holomorphic structure on the vector bundle W . Using the injective homomorphism
of Lie algebras associated to ρ in (2.2)

(2.10) g −→ EndC(V ) ,

we get a homomorphism of vector bundles

(2.11) ad(E0
G) −→ End(W ) = W ⊗W ∗ ,

where W is the vector bundle in (2.9). Take any (∂E0
G

, θ) ∈ B0 (see (2.8)). Let ∂W be

the holomorphic structure on W defined by ∂E0
G
. Let θW ∈ A1,0(End(W )) be the smooth

section given by θ using the homomorphism in (2.11).

Let A(W ) be the space of all holomorphic structures on the vector bundle W . Define

(2.12) BW := A(W )× A1,0(End(W )) .

Since W is associated to E0
G by a faithful representation, there is a natural embedding

(2.13) δ : A0 −→ A(W ) ,

where A0 is defined in (2.6). We have an embedding

(2.14) φ : B0 −→ BW

that sends any (∂E0
G

, θ) to the pair (∂W , θW ) constructed above from (∂E0
G

, θ).

The Lie algebra of K̃ (see (2.3)) will be denoted by k̃. Let g0 denote the inner product

on k̃ defined by 〈A ,B〉 = −trace(AB). Since EndC(V ) = k̃ ⊕
√
−1̃k, where V is the

G–module in (2.2), this g0 defines a Hermitian inner product g1 on EndC(V ). The Lie
algebra of K (see (2.1)) will be denoted by k. Let g′0 be the restriction of g0 to the subspace

k ⊂ k̃. Since g = k ⊕
√
−1k, this g′0 defines a Hermitian inner product g′1 on g. Note

that g′1 is the restriction of g1. The inner products g′1 and g1 induce inner products on the
fibers of the vector bundle ad(E0

G) and End(W ) respectively. Indeed, these follow from

the fact that g′1 and g1 are K–invariant and K̃–invariant respectively.

We will now show that the Cartesian product B0 in (2.8) is the total space of the cotan-
gent bundle of the affine space A0. For any (ω0,1 , ω1,0) ∈ A0,1(ad(E0

G)) × A1,0(ad(E0
G)),

we have
〈ω0,1 , ω1,0〉 ∈ A1,1
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using the inner product on the fibers of ad(E0
G). Consider the pairing

A0,1(ad(E0
G))× A1,0(ad(E0

G)) −→ C

defined by

(ω0,1 , ω1,0) 7−→
∫

X

〈ω0,1 , ω1,0〉 ∈ C .

This pairing identifies A1,0(ad(E0
G)) with the dual of A0,1(ad(E0

G)). Therefore, the total
space of the cotangent bundle of the affine space A0 gets identified with B0.

Similarly, using the inner product on the fibers of End(W ), the Cartesian product BW

in (2.12) gets identified with the total space of the cotangent bundle of the affine space
A(W ).

Since the fibers of the vector bundles ad(E0
G) and End(W ) have inner products, we get

inner products on the vector spaces

A0,1(ad(E0
G))⊕ A1,0(ad(E0

G)) and A0,1(End(W ))⊕ A1,0(End(W )) .

More precisely, the inner product on A0,1(ad(E0
G))⊕ A1,0(ad(E0

G)) is defined by

‖(ω0,1 , ω1,0)‖2 =
√
−1

∫
X

〈ω1,0 , ω1,0〉 −
√
−1

∫
X

〈ω0,1 , ω0,1〉 .

The inner product on A0,1(End(W ))⊕ A1,0(End(W )) is defined similarly.

Recall that B0 and BW are identified with

A0,1(ad(E0
G))⊕ A1,0(ad(E0

G)) and A0,1(End(W ))⊕ A1,0(End(W ))

respectively (the affine space A0 is identified with A0,1(ad(E0
G)) after choosing the base

point ∂0 in (2.7); since ∂0 gives a point in A(W ), it follows that A(W ) is identified
with A0,1(End(W ))). Therefore, the inner products on A0,1(ad(E0

G))⊕A1,0(ad(E0
G)) and

A0,1(End(W ))⊕ A1,0(End(W )) define Kähler structures on B0 and BW respectively.

Lemma 2.1. The embedding φ in (2.14) preserves the Kähler forms. Moreover, the
second fundamental form of the embedding φ vanishes. In particular, this embedding is
totally geodesic.

Proof. Since the inner product g′1 on g is the restriction of the inner product g1 on
EndC(V ), it follows immediately that φ preserves the Kähler forms.

Let g⊥ ⊂ EndC(V ) be the orthogonal complement for the inner product g1 on EndC(V ).

Since g1 is K–invariant (recall that it is in fact K̃–invariant), and the adjoint action of
K on EndC(V ) preserves the subspace g ⊂ EndC(V ), it follows that the adjoint action
of K on EndC(V ) preserves g⊥. Since K is Zariski dense in G, it follows that the adjoint
action of G on EndC(V ) preserves g⊥. Therefore, the orthogonal decomposition

(2.15) EndC(V ) = g⊕ g⊥

is preserved by the adjoint action of G.

Let

(2.16) F0 := E0
K(g⊥) −→ X
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be the vector bundle associated to the principal K–bundle E0
K (see (2.4)) for the K–

module g⊥. Note that the G–invariant orthogonal decomposition of EndC(V ) in (2.15)
induces an orthogonal decomposition

(2.17) End(W ) = ad(E0
G)⊕ F0 .

Hence we have orthogonal decompositions
(2.18)
A0,1(End(W )) = A0,1(ad(E0

G))⊕A0,1(F0) and A1,0(End(W )) = A1,0(ad(E0
G))⊕A1,0(F0) .

Let H denote the trivial vector bundle over B0 (see (2.8)) with fiber A0,1(F0)⊕A1,0(F0).
Using the orthogonal decompositions in (2.18) it follows that the orthogonal complement
of the differential

(2.19) dφ : T 1,0B0 −→ φ∗T 1,0BW

is identified with the above defined vector bundle H (here T 1,0 denotes the holomorphic
tangent bundle).

On the other hand, H ⊂ φ∗T 1,0BW is a holomorphic subbundle because the ad-
joint action of G on EndC(V ) preserves g⊥. Consequently, the orthogonal complement
H = dφ(T 1,0B0)

⊥ ⊂ φ∗T 1,0BW (see (2.19)) is preserved by the Chern connection on the
holomorphic Hermitian vector bundle φ∗T 1,0BW . Since the Chern connection for a Kähler
metric coincides with the Levi–Civita connection, it follows that dφ(T 1,0B0)

⊥ is preserved
by the connection on φ∗T 1,0BW obtained by pulling back the Levi–Civita connection on
BW . In other words, the second fundamental form of the embedding φ vanishes. This
completes the proof of the lemma. �

Remark 2.2. Take any z := (∂E0
G

, θ) ∈ B0 which is a Higgs G–bundle, meaning θ is

holomorphic with respect to the holomorphic structure ∂E0
G
. The φ(z) is a Higgs vector

bundle.

A connection on the principal G–bundle E0
G decomposes the real tangent bundle T RE0

G

into a direct sum of horizontal and vertical tangent bundles. Using this decomposition,
the almost complex structures of G and X together produce an almost complex structure
on E0

G. Let ∂E0
G

be a holomorphic structure on E0
G. A connection ∇ on E0

G is said to be

compatible with ∂E0
G

if the almost complex structure on E0
G given by ∇ coincides with the

one underlying the complex structure ∂E0
G

on E0
G.

Given a holomorphic structure ∂E0
G

on E0
G, there is a unique connection ∇ on E0

K such

that the connection on E0
G induced by ∇ is compatible with ∂E0

G
; it is known as the

Chern connection. On the other hand, given a connection ∇1 on E0
G, there is a unique

holomorphic structure ∂
′
1 on E0

G such that ∇1 is compatible with ∂
′
1 (this is because

dimC X = 1). Therefore, we have a canonical bijective correspondence between A0 (see
(2.6)) and the space of all connections on E0

K . Similarly, we have a canonical bijective
correspondence between A(W ) (the space of all holomorphic structures on the vector

bundle W in (2.9)) and the space of all connections on the principal K̃–bundle

(2.20) E0eK := E0
K(K̃) = E0

K ×K K̃ −→ X

obtained by extending the structure group of E0
K using the homomorphism ρ : K −→ K̃.
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The curvature of a connection ∇ will be denoted by K(∇).

Let

(2.21) ∗ : End(W ) −→ End(W )

be the conjugate linear automorphism that acts on the subbundle ad(E0eK) ⊂ End(W )

(see (2.20)) as multiplication by −1; since End(W ) = ad(E0eK) ⊕
√
−1 · ad(E0eK), this

condition uniquely determines the automorphism in (2.21).

Fix a Hermitian metric h0 on T 1,0X.

Let

YMHW : BW −→ R
be the function defined by (∂E0

G
, θ) 7−→ ‖K(∂E0

G
) + [θ , θ∗]‖2, where K(∂E0

G
) is the cur-

vature of the connection associated to ∂E0
G
, and the inner product on 2–forms is defined

using h and the inner product on the fibers of End(E). If locally θ = A × dz, then
[θ , θ∗] = (AA∗ − A∗A)dz∧dz; see [19] for more on this function YMHW .

Let ∗ : ad(E0
G) −→ ad(E0

G) be the conjugate linear automorphism that acts on the
subbundle ad(E0

K) ⊂ ad(E0
G) (see (2.4)) as multiplication by −1. Note that this au-

tomorphism coincides with the restriction of the automorphism in (2.21). Consider B0

defined in (2.8). Let

(2.22) YMHG : B0 −→ R

be the function defined by (∂E0
G

, θ) 7−→ ‖K(∂E0
G
) + [θ , θ∗]‖2; as before, K(∂E0

G
) is the

curvature of the connection associated to the holomorphic structure ∂E0
G
.

We first note that

(2.23) YMHG = YMHW ◦ φ ,

where φ is the function constructed in (2.14). Let dYMHW be the smooth exact 1–form
on BW . The following lemma shows that the normal vectors to T RB0 for the embedding
φ in (2.14) are annihilated by the form dYMHW .

Lemma 2.3. For any point x ∈ B0, and any normal vector

v ∈ (dφ(T R
x B0))

⊥ ⊂ T R
φ(x)BW ,

the following holds:

dYMHW (v) = 0 .

Proof. Take any pair (v , w) ∈ A0,1(F0) ⊕ A1,0(F0), where F0 is the vector bundle in
(2.16). Take any (∂E0

G
, θ) ∈ B0. Let ∇ be the connection on E0

G corresponding to

the holomorphic structure ∂E0
G
. Therefore, the connection on E0

G corresponding to the

holomorphic structure ∂E0
G

+ tv, where t ∈ R, is ∇ + tv − tv∗. The automorphism in

(2.21) preserves the orthogonal decomposition of End(W ) in (2.17). Hence for t ∈ R, all
four tv, tv∗, tw and tw∗ are 1–forms with values in F0. On the other hand, θ and θ∗ are
1–forms with values in ad(E0

G).

Let ∇′ be the connection on the vector bundle W associated to E0
G induced by the

connection ∇ on E0
G. So the curvature of ∇′ coincides with the curvature of ∇, in
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particular, K(∇′) is a 2–form with values in ad(E0
G). We note that

K(∇′ + tv − tv∗) = K(∇′) + t∇′(v − v∗) + t2C ,

where C is independent of t. Since ∇′ is induced by a connection E0
G, and the de-

composition in (2.15) is preserved by the action of G, the connection ∇′ preserves the
decomposition in (2.17). Hence ∇′(v − v∗) is a 2–form with values in F0.

Using these and the fact that the decompositions in (2.18) are orthogonal, we have

(
d

dt
‖K(∇′ + tv − tv∗) + [θ + tw , θ∗ + tw∗]‖2)

∣∣∣
t=0

= 0 .

This completes the proof of the lemma. �

Let

(2.24) ΨW : BW −→ T RBW

be the gradient vector field on BW for the function YMHW . From Lemma 2.3 and (2.23)
we have the following corollary:

Corollary 2.4. The restriction of the vector field ΨW to φ(B0) (see (2.14)) lies in the
image of the differential dφ in (2.19). Furthermore, this restriction coincides with the
gradient vector field for the function YMHG.

3. Closedness of the embedding

For a complex vector space V ′, let P (V ′) denote the projective space of lines in V ′.
Any linear action on V ′ induces an action on P (V ′).

Consider the closed subgroup ρ(G) ⊂ GL(V ) in (2.2). A theorem of C. Chevalley (see
[12, p. 80]) says that there is a finite dimensional left GL(V )–module V1 and a line

(3.1) ` ⊂ V1

such that ρ(G) is exactly the isotropy subgroup, for the action of GL(V ) on P (V1), of the
point in P (V1) representing the line `.

Let EGL(V ) := E0
G(GL(V )) = E0

G ×G GL(V ) −→ X be the principal GL(V )–bundle
obtained by extending the structure group of E0

G (see (2.5)) by the homomorphism ρ
in (2.2). Therefore, the vector bundle EGL(V )(V ), associated to EGL(V ) by the standard
action of GL(V ) on V , is identified with the vector bundle W in (2.9). Let

(3.2) V1 := EGL(V )(V1) −→ X

be the vector bundle associated to EGL(V ) for the above GL(V )–module V1. Since

V1 = E0
G(V1) ,

and the action of G on V1 preserves the line ` in (3.1), the line ` defines a C∞ line
subbundle

(3.3) L0 ⊂ V1 .

Take any holomorphic structure ∂W ∈ A(W ) on the vector bundle W (see (2.13)).
The holomorphic structure ∂W on W defines a holomorphic structure on the principal
GL(V )–bundle EGL(V ) corresponding to W . Hence ∂W defines a holomorphic structure
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on the associated vector bundle V1 in (3.2). This holomorphic structure on V1 will be

denoted by ∂
′
1.

Since ρ(G) is the isotropy subgroup of the point in P (V1) representing the line ` for the
action of GL(V ) on P (V1), we conclude that ∂W lies in δ(A0) (see (2.13)) if and only if
the line subbundle L0 in (3.3) is holomorphic with respect to the holomorphic structure

∂
′
1 on V1.

Therefore, we have the following lemma:

Lemma 3.1. The embedding δ in (2.13) is closed.

The action of GL(V ) on V1 gives a homomorphism

EndC(V ) −→ EndC(V1)

of Lie algebras. This homomorphism in turn gives a homomorphism of vector bundles

(3.4) End(W ) −→ End(V1) ,

where V1 is the vector bundle in (3.2).

Take any θ ∈ A1,0(End(W )). Let θ′ ∈ A1,0(End(V1)) be the section constructed from
θ using the homomorphism in (3.4). Since ρ(G) is the isotropy subgroup of the point in
P (V1) representing the line ` for the action of GL(V ) on P (V1), we conclude the following:
The section θ lies in the image of the natural homomorphism

A1,0(ad(E0
G)) −→ A1,0(End(W ))

if and only if θ′(L0) ∈ A1,0(L0), where L0 is the subbundle in (3.3).

Therefore, using Lemma 3.1, we have following proposition:

Proposition 3.2. The embedding φ in (2.14) is closed.

Let

(3.5) S(E0
G) ⊂ B0

be the subset consisting of all pairs that are Higgs G–bundles. So a pair

(∂E0
G

, θ) ∈ A0 × A1,0(ad(E0
G)) = B0

lies in S(E0
G) if and only if the section θ is holomorphic with respect to the holomorphic

structure on ad(E0
G)⊗KX defined by ∂E0

G
.

Consider the gradient flow on B0 for the function YMHG defined in (2.22). The following
lemma shows that this flow preserves the subset S(E0

G) defined in (3.5).

Lemma 3.3. Take any z := (∂E0
G

, θ) ∈ S(E0
G). Let

γz : R −→ B0

be the integral curve for the gradient flow on B0 for the function YMHG such that γz(0) =
z. Then

γz(t) ∈ S(E0
G)

for all t ∈ R.
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Proof. Consider BW defined in (2.12). Let

S(W ) ⊂ BW

be the subset consisting of all pairs (∂
′
, θ) ∈ A(W ) × A1,0(End(W )) such that θ is

holomorphic with respect to the holomorphic structure given by ∂
′
. For the map φ in

(2.14),

φ(S(E0
G)) ⊂ S(W )

(see Remark 2.2).

In view of Corollary 2.4, to prove the lemma it suffices to show that the vector field
ΨW (defined in (2.24)) preserves the subset S(W ). But this is proved in [19]; from [19,
Lemma 3.10] and the proof of Proposition 3.2 in [19, pp. 295–297] it follows that the flow
ΨW is generated by the action of the complex gauge group, hence S(W ) is preserved by
the flow. This completes the proof of the lemma. �

Theorem 3.4. The integral curve γz for the gradient flow of YMHG on B0 with initial
condition z := (∂E0

G
, θ) ∈ S(E0

G) converges to a limit in S(E0
G).

Proof. Theorem 1.1 in [19] shows that the gradient flow of YMHW on the space BW with
initial conditions in S(W ) converges to a limit in S(W ). Moreover, Corollary 2.4 and
Lemma 3.3 together with the uniqueness of the flow from Proposition 3.2 in [19] give the
following: when the initial conditions are in φ (S(E0

G)), then the flow preserves the space
φ (S(E0

G)). Combining these two facts, we see that because the embedding φ is closed
by Proposition 3.2, the limit of the flow lies in φ (S(E0

G)). Since φ(γz) coincides with the
gradient flow of YMHW with initial conditions in φ (S(E0

G)) by Corollary 2.4, we conclude
that limt→∞ γz(t) exists, and it is in S(E0

G). �

4. Reduction of structure group

As before, G is a connected reductive linear algebraic group defined over C.

See [3], [6] for the definitions of semistable, stable and polystable Higgs G–bundles.

Lemma 4.1. Let (EG , θ) be a semistable Higgs G–bundle on X. The Higgs vector bundle
(ad(EG) , ϕ) is semistable, where ϕ is the Higgs field on ad(EG) defined by θ using the Lie
algebra structure of the fibers of ad(EG).

Proof. This follows from [3, p. 37, Lemma 3.6], but some explanations are necessary.

Let Z(G) ⊂ G be the connected component of the center of G containing the identity
element. Define

G′ := G/Z(G) .

Let (EG′ , θ′) be the Higgs G′–bundle over X obtained by extending the structure group
of (EG , θ) using the quotient map G −→ G′. Since (EG , θ) is semistable, it follows
immediately that the Higgs G′–bundle (EG′ , θ′) is semistable. Let ϕ′ be the Higgs field
on the adjoint vector bundle ad(EG′) induced by θ′. Since (EG′ , θ′) is semistable, and the
group G′ does not have any nontrivial character, the Higgs vector bundle (ad(EG′) , ϕ′) is
semistable [3, p. 37, Lemma 3.6] (see also [3, p. 26, Proposition 2.4]). We have

(ad(EG) , ϕ) = (ad(EG′) , ϕ′)⊕ (X × z(g), 0) ,



MORSE THEORY FOR HIGGS G–BUNDLES 11

where z(g) is the Lie algebra of Z(G), and X × z(g) is the trivial vector bundle over
X with fiber z(g). Hence (ad(EG) , ϕ) is semistable; note that degree(ad(EG)) = 0 =
degree(ad(EG′)). This completes the proof of the lemma. �

Let (EG , θ) be a Higgs G–bundle on X and H ⊂ G a closed algebraic subgroup.
A reduction of structure group of the Higgs G–bundle (EG , θ) to H is a holomorphic
reduction of structure group EH ⊂ EG to H over X such that θ lies in the image of the
homomorphism H0(X, ad(EH)⊗KX) −→ H0(X, ad(EG)⊗KX).

Given a Higgs G–bundle (EG , θ), there is a canonical Harder–Narasimhan reduction
of structure group of (EG , θ) to a parabolic subgroup P of G [10] (the method in [10] is
based on [4]). If (EG , θ) is semistable, then P = G.

We recall the definition of the Harder–Narasimhan reduction of a Higgs G–bundle.

Let (EG , θ) be a Higgs G–bundle on X. Then there is a parabolic subgroup P ⊂ G
and a reduction of structure group EP of (EG , θ) to P such that

(1) the principal L(P )–bundle EL(P ) := EP ×P L(P ) −→ X, where L(P ) is the Levi
quotient of P , is semistable, and

(2) for any nontrivial character χ of P which is a nonnegative linear combination of
simple roots (with respect to some Borel subgroup contained in P ) and is trivial
on the center of G, the associated line bundle EP (χ) −→ X is of positive degree.

The above pair (P ,EP ) is unique in the following sense: for any other pair (P1 , EP1)
satisfying the above two conditions, there is some g ∈ G such that

• P1 = g−1Pg, and
• EP1 = EP g.

(See [10], [4].)

A semistable vector bundle E −→ X admits a filtration of subbundles

(4.1) 0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En−1 ⊂ En = E

such that Ei/Ei−1, 1 ≤ i ≤ n, is the maximal polystable subbundle of E/Ei−1 with

degree(Ei/Ei−1)

rank(Ei/Ei−1)
=

degree(E)

rank(E)

(see [13, p. 23, Lemma 1.5.5]); this filtration is called the socle filtration. In [1], this
was generalized to semistable principal G–bundles (see [1, p. 218, Proposition 2.12]). In
Theorem 4.4 proved below, this is further generalized to semistable Higgs G–bundles.

We will define admissible reductions of a Higgs G–bundle. See [5, pp. 3998–3999] for
the definition of an admissible reduction of structure group of a principal G–bundle.

Definition 4.2. An admissible reduction of structure group of a Higgs G–bundle (EG , θ)
to a parabolic subgroup P ⊂ G is a reduction of structure group EP of (EG , θ) to P such
that EP ⊂ EG is an admissible reduction of EG.

Let (EG , θ) be a Higgs G–bundle on X. Let E ′
P ⊂ EG be a reduction of structure

group of (EG , θ) to a parabolic subgroup P of G. So θ is a section of ad(E ′
P )⊗KX . Let

L(P ) be the Levi quotient of P . Let E ′
P (L(P )) be the principal L(P )–bundle over X

obtained by extending the structure group of E ′
P using the quotient map P −→ L(P ).
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The quotient homomorphism Lie(P ) −→ Lie(L(P )) induces a homomorphism of adjoint
bundles

ad(E ′
P ) −→ ad(E ′

P (L(P ))) .

Using this homomorphism of vector bundles, the section θ of ad(E ′
P )⊗KX gives a holo-

morphic section of ad(E ′
P (L(P )))⊗KX . In other words, θ gives a Higgs field on E ′

P (L(P )).
This Higgs field on E ′

P (L(P )) will be denoted by θ′.

Let (EG , θ) be a semistable Higgs G–bundle on X which is not polystable. Let Q (
G be a proper parabolic subgroup which is maximal among all the proper parabolic
subgroups P such that (EG , θ) has an admissible reduction of structure group E ′

P ⊂ EG

(see Definition 4.2) for which the associated Higgs L(P )–bundle (E ′
P (L(P )) , θ′) defined

above is polystable.

Definition 4.3. An admissible reduction of structure group of (EG , θ) to Q

EQ ⊂ EG

will be called a socle reduction if the associated Higgs L(Q)–bundle (EQ(L(Q)) , θ′) is
polystable, where L(Q) is the Levi quotient of Q.

Theorem 4.4. Let (EG , θ) be a semistable Higgs G–bundle on X which is not polystable.
Then (EG , θ) admits a socle reduction. If (Q , EQ) and (Q1 , EQ1) are two socle reductions
of (EG , θ), then there is some g ∈ G such that Q1 = g−1Qg, and EQ1 = EQg.

Proof. First note that the construction of the socle filtration of a semistable vector bundle
extends to semistable Higgs bundles; indeed, the proof in [13, p. 23, Lemma 1.5.5] goes
through in this case also. Therefore, if (E , θ) is a semistable Higgs vector bundle on X
which is not polystable, there is filtration of subbundles

(4.2) 0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En−1 ⊂ En = E

such that

(4.3) θ(Ei) ⊂ Ei ⊗KX

for all i ∈ [1 , n], and (Ei/Ei−1 , θ′i) is the unique maximal polystable Higgs subbundle of
the Higgs bundle (E/Ei−1 , θ′′i ) such that

degree(Ei/Ei−1)

rank(Ei/Ei−1)
=

degree(E)

rank(E)
,

where θ′i and θ′′i are the Higgs fields on Ei/Ei−1 and E/Ei−1 respectively induced by θ
(the condition in (4.3) ensures that θ induces Higgs fields on both Ei/Ei−1 and E/Ei−1).

Let ad(EG) −→ X be the adjoint bundle of EG. Let ϕ be the Higgs field on ad(EG)
defined by θ. From Lemma 4.1 we know that the Higgs vector bundle (ad(EG) , ϕ) is
semistable. We note if (ad(EG) , ϕ) is polystable, then (EG , θ) is polystable. Since (EG , θ)
is not polystable, we conclude that the Higgs vector bundle (ad(EG) , ϕ) is not polystable.
Let

(4.4) 0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em−1 ⊂ Em = ad(EG)

be the socle filtration for (ad(EG) , ϕ) (see (4.2)).
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Fix a G–invariant nondegenerate symmetric bilinear form B0 on the Lie algebra g of G;
such a form exists because G is reductive. This form B0 defines nondegenerate symmetric
bilinear forms on the fibers of ad(EG). So we get an isomorphism

(4.5) ad(EG)
∼−→ ad(EG)∗ .

Let ϕ∗ be the dual Higgs field on ad(EG)∗ defined by ϕ. The isomorphism in (4.5) clearly
takes ϕ to ϕ∗. In particular, (ad(EG) , ϕ) is self–dual.

From the uniqueness of the socle filtration it follows that the filtration in (4.4) is self–
dual. Also, the integer m in (4.4) is odd. The tensor product of two semistable Higgs
bundles on X is again semistable [18, p. 38, Corollary 3.8]. Using these observations it
follows that

• the subbundle Em+1
2

is closed under the Lie bracket operation on the fibers of

ad(EG),
• the fibers of Em−1

2
are ideals in the fibers of Em+1

2
, and are nilpotent,

• the fibers of the quotient Em+1
2

/Em−1
2

are reductive, and

• the Higgs field θ is a section of Em+1
2
⊗KX .

(see [1, p. 218, Proposition 2.12]). It should be clarified that to prove the above statements
we need the following: for any two polystable Higgs vector bundles (W1 , ϕ1) and (W2 , ϕ2)
over X, the tensor product (W1 ⊗W2 , ϕ1 ⊗ IdW2 + IdW1 ⊗ ϕ2) is also a polystable Higgs
vector bundle. To prove that (W1 ⊗ W2 , ϕ1 ⊗ IdW2 + IdW1 ⊗ ϕ2) is polystable, let ∇1

and ∇2 be the Hermitian–Yang–Mills connections on (W1 , ϕ1) and (W2 , ϕ2) respectively
(see [18, p. 19, Theorem 1(2)]). Then the induced connection ∇1 ⊗ IdW2 + IdW1 ⊗∇2 on
W1 ⊗ W2 is a Hermitian–Yang–Mills connection for (W1 ⊗ W2 , ϕ1 ⊗ IdW2 + IdW1 ⊗ ϕ2).
Hence (W1 ⊗W2 , ϕ1 ⊗ IdW2 + IdW1 ⊗ ϕ2) is polystable [18, p. 19, Theorem 1(2)].

From the above statements it follows that Em+1
2

is a Lie algebra subbundle of the Lie

algebra bundle ad(EG) such that the fibers of Em+1
2

are parabolic subalgebras.

The fibers of ad(EG) are identified with the Lie algebra g up to an inner automorphism.
More precisely, for any point x ∈ X, and any point z in the fiber (EG)x of EG, we have
an isomorphism

(4.6) σz : g −→ ad(EG)x

that sends any v ∈ g to the image of (z , v) in ad(EG)x (recall that ad(EG) is a quotient of
EG × g). For any g ∈ G, the isomorphisms σz and σzg differ by the inner automorphism
Ad(g) of g. Let Q ⊂ G be a parabolic subgroup in the conjugacy class of parabolic
subgroups whose Lie algebras are identified with the fibers of Em+1

2
by some isomorphism

constructed in (4.6). The normalizer of any parabolic subgroup P ⊂ G coincides with
P . In particular, the normalizer of Q ⊂ G is Q itself. Hence the subalgebra bundle
Em+1

2
⊂ ad(EG) gives a holomorphic reduction of structure group EQ ⊂ EG such that

the subbundle ad(EQ) ⊂ ad(EG) coincides with Em+1
2

. For any point x ∈ X, the fiber

(EQ)x ⊂ (EG)x consists of all points z ∈ (EG)x such that the isomorphism σz in (4.6)
takes Lie(Q) to (Em+1

2
)x.
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Since ad(EQ) = Em+1
2

, and the Higgs field θ is a section of Em+1
2
⊗KX , we conclude that

EQ is a reduction of structure group of the Higgs G–bundle (EG , θ). It is straight–forward
to check that EQ is a socle reduction of (EG , θ).

Given any socle reduction EQ′ of (EG , θ), it can be shown that the adjoint bundle
ad(EQ′) coincides with the subbundle Em+1

2
in (4.4). From this the uniqueness statement

in the theorem follows. This completes the proof of the theorem. �

For a polystable Higgs G–bundle (EG , θ) the socle reduction is defined to be EG itself.

Given a Higgs G–bundle, combining the Harder–Narasimhan reduction with the socle
reduction we get a new Higgs G–bundle which will be described below.

Let (EG , θ) be a Higgs G–bundle. Let (EP , θP ) be the Harder–Narasimhan reduction
of (EG , θ). If (EG , θ) is semistable, then P = G, and (EP , θP ) = (EG , θ).

Let L(P ) be the Levi quotient of P . Let

(4.7) (EL(P ) , θL(P ))

be the Higgs L(P )–bundle obtained by extending the structure group of the above Higgs
P–bundle (EP , θP ) using the quotient map P −→ L(P ). From the definition of a Harder–
Narasimhan reduction we know that the Higgs L(P )–bundle (EL(P ) , θL(P )) is semistable.
Therefore, (EL(P ) , θL(P )) has a unique socle reduction by Theorem 4.4. Let

EH ⊂ EL(P )

be the socle reduction of (EL(P ) , θL(P )). So H is a Levi subgroup of a parabolic subgroup
of L(P ); the Higgs field on EH induced by θL(P ) will be denoted by θH (see Definition
4.3).

The Levi quotient L(P ) is identified with all the Levi factors of P , and H is a subgroup
of L(P ). Therefore, H becomes a subgroup of G after fixing a Levi factor of P . Let

(4.8) (E ′
G , θ′)

be the Higgs G–bundle obtained by extending the structure group of the Higgs H–bundle
(EH , θH) using the inclusion of H in G.

Take any

(4.9) z := (∂E0
G

, θ) ∈ S(E0
G)

(see (3.5)). Let (EG , θ) be the Higgs G–bundle defined by the holomorphic structure ∂E0
G

on E0
G together with the section θ in (4.9). Let (E ′

G , θ′) be the new Higgs G–bundle
constructed in (4.8) from (EG , θ).

Lemma 4.5. Let γz be the integral curve for the gradient flow of YMHG on B0 with initial
condition z (see (4.9)). Let

(∂1 , θ1) = lim
t→∞

γz(t) ∈ S(E0
G)

be the limit in Theorem 3.4. Then the Higgs G–bundle defined by (∂1 , θ1) is holomorphi-
cally isomorphic to the Higgs G–bundle (E ′

G , θ′) constructed above.
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Proof. For Higgs vector bundles this was proved in [19] (see [19, p. 325, Theorem 5.3]). Let
(EG , θ) be the Higgs G–bundle defined by z in (4.9). Let (ad(EG) , ϕ) be the corresponding
Higgs vector bundle defined by the Higgs field on the adjoint vector bundle ad(EG) induced
by θ.

Recall that the Harder–Narasimhan reduction of the Higgs G–bundle (EG , θ) is con-
structed using the Harder–Narasimhan filtration of the Higgs vector bundle (ad(EG) , ϕ).
Let (EL(P ) , θL(P )) be the semistable principal Higgs bundle constructed as in (4.7) from the
Harder–Narasimhan reduction of (EG , θ). Recall that the socle reduction of a semistable
Higgs L(P )–bundle (EL(P ) , θL(P )) is constructed using the socle filtration of the adjoint
vector bundle ad(EL(P )) equipped with the Higgs field induced by θL(P ). From these con-
structions it can be deduced that the Harder–Narasimhan–socle filtration of the Higgs
vector bundle (ad(EG) , ϕ) is compatible with the filtration of ad(EG) obtained from
(EL(P ) , θL(P )). Using this, the lemma follows. �
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