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Abstract. In this paper we investigate the moduli space of parabolic Higgs bundles over a punc-
tured Riemann surface with varying weights at the punctures. We show that the harmonic metric
depends analytically on the weights and the stable Higgs bundle. This gives a Higgs bundle gen-
eralisation of a theorem of McOwen on the existence of hyperbolic cone metrics on a punctured
surface within a given conformal class, and a generalisation of a theorem of Judge on the analytic
parametrisation of these metrics.

1. Introduction

The uniformisation theorem shows that any compact Riemann surface admits a metric of constant

scalar curvature within each conformal class. One way of proving this is to solve the resulting partial

differential equation for the conformal factor, which was carried out by Berger when the Euler

characteristic is nonpositive [2]. More generally, by solving this PDE with a different curvature

function, Kazdan and Warner [11] gave necessary and sufficient conditions for a given function to

be equal to the scalar curvature of some metric within a given conformal class, generalising the

sufficient conditions given by Berger [3].

It was originally observed by Hitchin [8] that this PDE can be solved in the general framework

of the Hitchin-Kobayashi correspondence for Higgs bundles. The theory of Hitchin [8] and Simpson

[17] shows that each stable Higgs bundle admits a unique metric solving the self-duality equations.

Hitchin observed in [8, Sec. 11] that, for a particular example of stable Higgs bundle (a Fuchsian

point in the moduli space), the metric solving the self-duality equations is related to a metric solving

the constant scalar curvature equations on the underlying compact Riemann surface. Moreover, by

deforming the Higgs field one can obtain all of the constant curvature metrics on the underlying

smooth surface, which leads to Hitchin’s construction of Teichmüller space for genus g ≥ 2. The

key idea is to find a stable Higgs bundle for which the Hitchin-Kobayashi correspondence produces

the required metric, instead of solving the PDE for the metric directly.

Subsequently Simpson [18] showed that a stable parabolic Higgs bundle with regular singularities

admits a unique metric solving the self-duality equations on a punctured surface. An important

aspect of the theory for noncompact surfaces is the need to control the growth of the metric near

the punctures. These growth conditions are determined by the stability condition in the form of

weights (introduced by Mehta and Seshadri [15] for parabolic bundles without a Higgs field) and
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by the weight filtration, which depends on the residue of the Higgs field at the punctures. Biswas,

Arés-Gastesi and Govindarajan [7] showed that Simpson’s theory for parabolic Higgs bundles can

be used to produce constant curvature cusp metrics on punctured surfaces, and they extended this

construction to the higher Teichmüller theory introduced by Hitchin [9].

With respect to metrics with a conical singularity at the punctures, results of McOwen [14]

prove the existence of hyperbolic cone metrics of any cone angle within a given conformal class,

and subsequent work of Judge [10] shows that these metrics depend analytically on the cone angles.

Both of these proofs are in the spirit of the approach of Berger [2], [3] and Kazdan-Warner [11]

which involves solving a PDE for the conformal factor. Troyanov [21] also used this approach to

give necessary and sufficient conditions for a function to be the curvature of a metric with conical

singularities within a given conformal class. When the cone angles are of the form 2π
m for m ∈ Z,

a Higgs bundle approach to constructing cone metrics was developed by Nasatyr and Steer [16],

who studied orbifold Higgs bundles on a finite ramified cover of the underlying compact Riemann

surface. Nasatyr and Steer also proved a connection between orbifold Higgs bundles and parabolic

Higgs bundles with rational weights and trivial weight filtration.

In this paper we investigate parabolic Higgs bundles with varying weights and study the depen-

dence of the harmonic metric on the weight and the Higgs bundle. The following theorem is the

main result, which uses the Hitchin-Kobayashi correspondence for parabolic Higgs bundles ([18,

Thm. 6]) to prove a Higgs bundle generalisation of Judge’s theorem.

Theorem 1.1 ((Theorem 4.1)). For an initial stable parabolic Higgs bundle, the metric solving

the self-duality equations depends analytically on the choice of weights and stable Higgs bundle in

a neighbourhood of the initial weight and Higgs bundle.

Judge’s theorem then appears in the case of a fixed Higgs bundle given by a Fuchsian point in

the rank 2 moduli space (Corollary 4.2). Along the way we obtain a new Higgs bundle proof of

McOwen’s theorem (Corollary 3.3), thus generalising the results of Nasatyr and Steer to metrics

with arbitrary cone angles.

Organisation of the paper. In Section 2 we recall the necessary definitions and results for

parabolic Higgs bundles from [15] and [18] and recall the necessary results on weighted Sobolev

spaces from [6] that will be used in the proof of the main theorem. In Section 3 we define a model

rank 2 harmonic bundle on a punctured disk associated to a given cone angle θ. The holonomy of

the associated flat connection around the puncture corresponds to an elliptic element of SL(2,C).

As the cone angle converges to zero we show that the harmonic cone metrics converge to the cusp

metric studied by Simpson [18, Sec. 5] and that (modulo gauge) the corresponding sequence of

holonomy representations given by elliptic elements of SL(2,C) converges to a parabolic element

of SL(2,C). Applying Simpson’s nonabelian Hodge theorem [18] then gives us a new proof of

McOwen’s theorem (Corollary 3.3).

In Section 4 we globalise the results of Section 3 and show in Theorem 4.1 that for an initial

algebraically stable parabolic Higgs bundle, the harmonic metric on E depends analytically on the



ANALYTIC CONVERGENCE OF HARMONIC METRICS FOR PARABOLIC HIGGS BUNDLES 3

weights and stable Higgs bundle. In particular, as a sequence of weights converges to a fixed weight,

then the harmonic metrics, flat connections and holonomy representations converge. Restricting to

the rank 2 case gives a new Higgs bundle proof of Judge’s theorem [10].

2. Background and definitions

2.1. Parabolic bundles and model metrics. In this section we recall some basic notions of

parabolic vector bundles and Higgs bundles from [15] and [18] which are relevant to the rest of the

paper. Since we use the results of Simpson from [18] throughout the rest of the paper, then we will

also follow the terminology and notation from [18] in Definitions 2.1–2.4 below.

Let X̄ be a compact Riemann surface with marked points {p1, . . . , pn} and let X = X̄ \
{p1, . . . , pn}. Let i : X → X̄ denote the inclusion. We will use a Riemannian metric on X̄ in

the conformal class determined by the complex structure to define the distance from each marked

point. For simplicity, in the sequel we will state the definitions for the case of one marked point p;

the general case follows in exactly the same way.

Let E → X be a holomorphic vector bundle. The notion of a filtered bundle from [18] involves

a choice of extension of E across the puncture p.

Definition 2.1 (Filtered regular Higgs bundle). A filtered vector bundle is an algebraic vector

bundle E → X together with a one-parameter family of vector bundles Eα → X̄ indexed by α ∈ R
such that E = i∗Eα for all α and

• Eα is a subsheaf of Eβ for each α ≥ β,

• for each α there exists ε′ > 0 such that Eα−ε = Eα for all 0 < ε < ε′, and

• Eα+1 = Eα[−p] for all α.

A filtered regular Higgs bundle (E, φ, {Eα}) is a filtered vector bundle (E, {Eα}) together with a

section φ ∈ H0(End(E0)⊗KX̄ [p]) such that φ preserves the subsheaf Eα ⊂ E0 for each α ∈ (0, 1].

The equivalence of this definition with the definition of a parabolic structure from [15] is given

as follows. Given a filtered bundle {Eα}α∈R, let Ep,0 denote the fibre of E0 → X̄ over p ∈ X̄.

Then the vector space Ep,0 has an induced filtration {Ep,α} indexed by 0 ≤ α < 1. For each α,

define Grα(Ep,0) to be the direct limit of the system Ep,α/Ep,β over all β > α. The weights of the

parabolic structure are the values of α in [0, 1) such that dimC Grα(Ep,0) > 0. In the sequel we

will use α or β to denote the weights of a given parabolic structure, and µ or ν to denote the set

{α1, . . . , αn} of weights counted with multiplicity.

In a neighbourhood U of p with coordinate z such that p corresponds to z = 0, the Higgs field

locally has the form ϕ(z)z−1dz, where ϕ is a holomorphic endomorphism of E0|U . The residue of φ

at p is defined to be Resp φ := ϕ(0). The condition that φ preserves the subsheaf Eα ⊂ E0 for each

α ∈ (0, 1] implies that the residue of φ respects the filtration {Ep,α} defined above. In the following

a parabolic Higgs bundle will refer to the triple ((∂̄A, φ), µ, {Ep,α}), where ∂̄A is the holomorphic
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structure on E0, φ ∈ H0(End(E0)⊗KX̄ [p]), µ is the set of weights and {Ep,α} denotes the filtration

on the fibre Ep over the marked point.

Definition 2.2 (Algebraic stability). Given a filtered regular Higgs bundle (E, φ, {Eα}) on X, the

algebraic degree is

(2.1) deg(E, φ, {Eα}) := deg(E0) +
∑

0≤α<1

α dimC(Grα(Ep,0)).

The filtered regular Higgs bundle (E, φ, {Eα}) is algebraically stable (resp. semistable) iff for all

filtered regular Higgs subbundles (F, φ, {Fα}) ⊂ (E, φ, {Eα}) we have

(2.2)
deg(F, φ, {Fα})

rank(F )
<

deg(E, φ, {Eα})
rank(E)

(resp. ≤).

A filtered regular Higgs bundle together with the notion of algebraic stability is a purely algebraic

object. In order to relate these objects to flat connections and representations of π1(X), we need

to use a Hermitian metric on the bundle. For a noncompact surface, this requires the imposition

of growth conditions at the marked points (cf. [18, Sec. 3]).

Definition 2.3 (Acceptable metric). Let E → X be a holomorphic bundle with a smooth Hermitian

metric h, and let Fh denote the curvature of the Chern connection. Let U ⊂ X be a neighbourhood

of the marked point p ∈ X̄ with coordinate r denoting the distance from p. The metric h on E is

acceptable if |Fh|h ≤ f + C
r2(log r)2

for some f ∈ Lq with q > 1.

In [17, Sec. 10] (see also [18, Prop. 3.1]), Simpson proves that if the metric h is acceptable then

there is a filtered bundle (E, φ, {Eα}) associated to (E, φ, h), where the germs of sections of Eα at

the puncture p are local sections s of E satisfying the growth condition

(2.3) |s|h ≤ Crα−ε

for all ε > 0. The acceptability of the metric guarantees that the sheaves Eα will be coherent.

Moreover, Simpson also shows in [18, Thm. 2] that if the harmonic bundle is tame (the growth

of the eigenvalues of the Higgs field is bounded by a constant times 1
r in a neighbourhood of the

puncture) then the harmonic metric is acceptable.

Definition 2.4 (Analytic degree). Given a holomorphic bundle E → X with an acceptable Her-

mitian metric h, let Fh denote the curvature of the Chern connection. The analytic degree is

deg(E, h) =
i

2π

∫
X

Tr(Fh).

Simpson proves in [18, Lem. 6.1] that the analytic and algebraic degree are equal if the metric

h is acceptable. With respect to the analytic degree, one can define analytic slope stability in an

analogous way to (2.2). Simpson proves in [18, Lem. 6.3] that the two definitions of stability are

equivalent if the metric is acceptable.

Now we describe the model asymptotic behaviour of the metrics near the marked point p, follow-

ing [6, Sec. 2] and [18, Sec. 7]. Since Resp φ preserves the filtration {Ep,α} then the graded pieces
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decompose as a direct sum Grα(Ep,0) =
⊕

λ Grλα(Ep,0), where Grλα is the generalised eigenspace of

Resp φ with generalised eigenvalue λ. The residue induces a nilpotent endomorphism Yα on each

Grα(Ep,0) by taking the upper triangular part of each Jordan block. The Yα then induces a further

filtration {Wk Grλα(Ep,0)}k∈Z called the weight filtration, with corresponding grading

(2.4) Grα(Ep,0) =
⊕
k∈Z

⊕
λ

Grk Grλα(Ep,0)

such that Yα(Grk Grλα) ⊂ Grk−2 Grλα. Therefore if we define the diagonal endomorphism Hα =⊕
k∈Z k · idGrk Grλα

then [Hα, Yα] = −2Yα. Then there exists an endomorphism Xα such that

(Hα, Xα, Yα) are the generators of a representation of sl2 on Grλα(Ep,0), i.e. we also have [Hα, Xα] =

2Xα and [Xα, Yα] = Hα.

Now choose an initial metric hp on Ep,0 such that the subspaces Grα(Ep,0) are orthogonal and

such that H∗α = Hα and Y ∗α = Xα. Given a trivialisation of E0 → X̄ in a neighbourhood U of p

with a projection π : U → {p}, we can pullback by π to extend the weight filtration, the grading

(2.4) and the sl2 representation to this neighbourhood. Let r denote the distance to the marked

point p in the neighbourhood U .

With respect to these weights, eigenvalues and operators, on each graded piece define the follow-

ing elements τ = (τ1, τ2, τ3) ∈ u(Grλα(Ep,0))⊕3 and σ = (σ1, σ2, σ3) ∈ u(Grλα(Ep,0))⊕3 (cf. [6, Sec.

3B])

τ1 = iα · id, τ2 + iτ3 = 2λ · id

iσ1 = H, σ2 = Y −X, iσ3 = Y +X

and extend these to elements of u(Ep,0) by taking the direct sum of the graded pieces. Then τ

corresponds to a representation of R3 in u(Ep,0) and σ corresponds to a representation of su(2) in

u(Ep,0) such that σ and τ commute. In the definition of weighted Sobolev spaces in (2.7) below,

we use ker(τ, σ) ⊂ End(Ep,0) to denote the kernel subspace of the actions of τ and σ on End(Ep,0).

Definition 2.5 (Model metric near a marked point). The model metric on E|U\{p} is defined with

respect to the grading (2.4) by

(2.5) hmod =
⊕
k,α,λ

r2α |log r|k ·
(
π∗hp|Grk Grλα

)
Example 2.6. The two basic building blocks for the weight filtration are described by Simpson

in [18, Sec. 5]. The first is where dimC Grλα = 1 and k = 0 from [18, p745]. The second is where

dimC Grλα = 2, the weight is α = 0 and the residue of φ is nilpotent, therefore the eigenvalue is λ = 0.

This determines a decomposition Ep,0 = E1,0
p,0⊕E

0,1
p,0 and a nilpotent endomorphism Y : E1,0

p,0 → E0,1
p,0 .

Then the graded object of the weight filtration has two pieces E1,0
p,0 (corresponding to k = 1) and

E0,1
p,0 (corresponding to k = −1) so the model metric has the form hmod = | log r| on E1,0

p,0 and

hmod = | log r|−1 on E0,1
p,0 . In both of these base cases ker(τ, σ) consists of the scalar multiples of

the identity in End(Ep,0). The general case described above is given by taking symmetric powers

and tensor products of these two basic examples.
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Definition 2.7 (Bounded distance between metrics). Given two metrics h, k on E → X, we say

that h is bounded with respect to k if supX distG/K(h, k) <∞, where distG/K refers to the geodesic

distance in the symmetric space G/K.

Remark 2.8. It will be useful in the next section to note that for r ∈
(
0, 1

2

)
, the metric h(r) =

−1
θ sinh(θ log r) = 1

2θ

(
r−θ − rθ

)
with values in R>0

∼= GL(1,C)/U(1) is a bounded distance from

the metric r−θ.

The following is the nonabelian Hodge theorem for parabolic Higgs bundles on Riemann surfaces

from [18, Thm. 6] (see also [6, Thm. 8.1] for the higher dimensional case).

Theorem 2.9. Let X̄ be a compact Riemann surface and let X = X̄\{p1, . . . , pm}. Let (E, φ, {Eα})
be an algebraically stable filtered regular Higgs bundle. Then there exists a Hermitian-Einstein

metric h on E such that in a neighbourhood Uj of each marked point pj there exists a finite Cj > 0

such that supUj dist(h, hmod) < Cj.

2.2. Weighted Sobolev spaces. This section contains the definitions of weighted Sobolev and

Hölder spaces that are used in the proof of Theorem 4.1. We follow closely the notation and setup

of [6]; other useful references are [1] and [5].

In the previous section we fixed a complex structure on the compact surface X̄, which induces a

complex structure on the punctured surface X = X̄ \ {p1, . . . , pn} and therefore a conformal class

of Riemannian metrics on X. Within this class we choose a complete metric on X which is equal

to a Poincaré metric with cusp singularities in a neighbourhood of each of the marked points (cf.

[6, Sec. 2C]).

Given a filtered regular Higgs bundle (E, φ, {Eα}) with a set of weights µ = {α1, . . . , αn}, and

a metric hµ equal to the model metric (2.5) near each marked point, let dhµ = ∂̄ + ∂hµ denote the

Chern connection with respect to the metric hµ and the holomorphic structure ∂̄ on E, and let

Dhµ = dhµ + φ+ φ∗ denote the associated GL(n,C) connection. Following Simpson’s notation (cf.

[19, p13]), we also define the operators D′′ = ∂̄ + φ and D′hµ = ∂hµ + φ∗ = Dhµ −D′′.
As in the previous section, in a neighbourhood of each marked point pj let r denote the distance

from pj with respect to the metric on X̄. In a neighbourhood U of each marked point, let y = | log r|.
Then the coordinates (y, θ) define an infinite cylinder on which the weighted Lp norm with weight

δ of a section η ∈ Ω`(U,E) is (cf. [13])

‖η‖Lpδ :=

(∫
U

∣∣∣yδη∣∣∣p 1

y
dydθ

) 1
p

.

Let t be a smooth function on X equal to log |log r| = log y near {p1, . . . , pn} and equal to zero far

from this set. As noted in [6, Sec. 4A], in a neighbourhood U of the marked points the above norm

is equivalent to

(2.6)

(∫
U
|eδtη|p dtdθ

) 1
p

.
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Using the function t, we can extend the above norm to a norm ‖ · ‖Lpδ on all of X.

Let ∇ denote the covariant derivative associated to the connection Dµ. The weighted Sobolev

norms are defined for η ∈ Ω`(X,End(E)) by

‖η‖
Lk,pδ

:=
k∑
j=0

‖∇jη‖Lpδ .

Define the space Lk,pδ (Ω`(X,End(E))) as the completion of Ω`(X,End(E)) in this norm. Recall the

definition of ker(τ, σ) from the previous section and let χ(t) be a smooth increasing function such

that χ(0) = 0 and χ(t) = 1 when |t| is large. Define

(2.7) L̂k,pδ (Ω0(X,End(E))) :=
{
η = χ(t)v + η1 : v ∈ ker(τ, σ) and η1 ∈ Lk,pδ

}
.

Since we only consider discrete marked points on a Riemann surface (in contrast to the case of a

smooth divisor on a compact Kähler manifold studied in [6]), then for ` ≥ 1 there are no `-forms

supported at these points. Therefore for ` ≥ 1, the definition of L̂k,pδ (Ω`(X,End(E))) from [6, (4.6)]

coincides with the definition of Lk,pδ (Ω`(X,End(E))) given above.

From now on we drop the notation for the bundle and the degree of the differential form, and

use L̂k,pδ := L̂k,pδ (Ω0(X,End(E))), unless it is necessary to include the extra notation.

From the multiplication and embedding theorems for weighted Sobolev spaces we have the fol-

lowing result from [6, Lem. 4.6] which will be used in the sequel.

Lemma 2.10. Let n = dimCX. If k − 2n
p > 0 then L̂k,pδ is an algebra and for all j ≤ k the space

L̂j,pδ is an L̂k,pδ -module.

Now let P be the GL(n,C) principal bundle associated to E → X, and let Ad(P ) be the

associated adjoint bundle. The gauge group is

(2.8) (GC)k,pδ := {g takes values in Ad(P ) : (∇g)g−1 ∈ L̂k−1,p
δ }

and the space of metrics is

(2.9) H
k,p
δ := {g∗g : g ∈ (GC)k,pδ }.

As above, given a filtered regular Higgs bundle (E, φ, {Eα}) and a metric hµ equal to the model

metric (2.5) near each marked point, define the connection Dhµ = dhµ + φ + φ∗, where dhµ is the

Chern connection of E with respect to the metric hµ. Now define the space of all connections as

A
1,p
δ := {Dhµ + a : a ∈ L̂1,p

δ (Ω1(End(E))}.

If p > 2n then Lemma 2.10 implies that (GC)2,p
δ acts continuously on A

1,p
δ and that the curvature

of any connection D ∈ A
1,p
δ satisfies FD ∈ L̂pδ(Ω

2(X,End(E))) = Lpδ(Ω
2(X,End(E))).

In the following we choose p > 2n so that Lemma 2.10 applies for all k ≥ 1, we choose δ > 0

small enough so that Proposition 2.13 below holds, and drop the notation for k, p and δ from the

gauge group and space of metrics.

The following two results will be used in the proof of Theorem 4.1.
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Lemma 2.11. Fix a Higgs bundle (E, φ) → X and let µ, ν be two different sets of weights such

that the associated parabolic Higgs bundles are algebraically stable with algebraic degree zero. Let

hµ be a Hermitian-Einstein metric with weight µ, let hν be a model metric with respect to the set

of weights ν, define k := h−1
µ hν and choose a section g of Ad(P ) such that k = g∗g. Then for

0 < δ < 1
2 we have gΛD′′(k−1D′hµk)g−1 ∈ Lpδ .

Proof. The curvatures are related by the formula

(2.10) g−1Λ(Fhν + [φ, φ∗])g − Λ(Fhµ + [φ, φ∗]) = ΛD′′(k−1D′hµk).

Since hµ is Hermitian-Einstein and the parabolic degree is zero then the second term on the left-

hand side vanishes. In the general case of a compact Kähler manifold with a smooth divisor D and

a bundle with parabolic structure at D, Biquard [6, (3.4)] describes the behaviour of the curvature

of the model metric in a tubular neighbourhood of D. In the case where dimCX = 1 and D

consists of isolated points, the normal bundle of D is trivial and specialisation is a bundle over a

set of isolated points, therefore the curvature of the specialisation (R+ [φ, φ∗])
SpéD
hν

∈ Ω1,1(D, E|D)

is zero. Therefore the asymptotics of the curvature of the Higgs bundle are

Fhν + [φ, φ∗] = O
(
| log r|−

1
2

)
.

Replacing t = log | log r| gives us

Fhν + [φ, φ∗] = O
(
e−

1
2
t
)

and so (2.6) shows that Λ(Fhν + [φ, φ∗]) ∈ Lpδ if 0 < δ < 1
2 . Therefore (2.10) shows that

gΛD′′(k−1D′hµk)g−1 ∈ Lpδ also. �

Lemma 2.12. Fix a connection Dhµ associated to a filtered regular Higgs bundle (E, φ, {Eα})
as above, and define D′′ = ∂̄ + φ, D′hµ = ∂hµ + φ∗. Given any g ∈ GC , let k = g∗g. Then

ΛD′′
(
k−1D′hµk

)
∈ Lpδ .

Proof. Since g ∈ GC, then (∇g)g−1 ∈ L̂1,p
δ by definition. Therefore Lemma 2.10 shows that k−1D′hµk

is in L1,p
δ (Ω1(End(E)), and so D′′

(
k−1D′hµk

)
∈ Lpδ , therefore ΛD′′

(
k−1D′hµk

)
∈ Lpδ also. �

The following restatement of a theorem of Biquard [6, Thm. 5.1] will be used in the proof of

Theorem 4.1.

Proposition 2.13. Let n = dimCX, let (E, φ, {Eα}) be a filtered regular Higgs bundle with set of

weights µ, let h be a metric within a bounded distance of the model metric associated to (E, φ, {Eα})
and let Dhµ be the associated connection with curvature Fhµ + [φ, φ∗]. If δ > 0 is small enough and

if p > 2n, then the Laplacian

(2.11) D∗hµDhµ : L̂2,p
δ (Ω0(End(E)))→ Lpδ(Ω

0(End(E)))

is Fredholm of index zero. If Fhµ + [φ, φ∗] = 0, then the same is true for (D′hµ)∗D′hµ and (D′′)∗D′′.
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Proof. The first statement follows directly from [6, Thm. 5.1]. Note that since the divisor D =

p1 + · · · + pn consists of isolated points when dimCX = 1, then the condition ∆A
D(f |D) = 0 from

[6, Thm. 5.1] is trivial in our case.

It follows from the Kähler identities that iΛ
(
Fhµ + [φ, φ∗]

)
= (D′hµ)∗D′hµ − (D′′)∗D′′ (cf. [19]).

Therefore Fhµ + [φ, φ∗] = 0 implies that (D′′)∗D′′ = (D′hµ)∗D′hµ = 1
2D
∗
hµ
Dhµ , and so the operators

(D′hµ)∗D′hµ : L̂2,p
δ (Ω0(End(E)))→ Lpδ(Ω

0(End(E)))

(D′′)∗D′′ : L̂2,p
δ (Ω0(End(E)))→ Lpδ(Ω

0(End(E)))

are also Fredholm of index zero. �

Corollary 2.14. With the same assumptions as above, the Laplacian restricted to the subbundle

End0(E) of trace-free forms

(2.12) D∗hµDhµ : L̂2,p
δ (Ω0(End0(E)))→ Lpδ(Ω

0(End0(E)))

is also Fredholm of index zero and if Fhµ + [φ, φ∗] = 0, then the same is true for the restrictions of

(D′hµ)∗D′hµ and (D′′)∗D′′ to the subbundle of trace-free forms. If D′hµ is injective then (D′hµ)∗D′hµ
maps the self-adjoint sections of L̂2,p

δ (Ω0(End0(E))) surjectively onto the self-adjoint sections of

Lpδ(Ω
0(End0(E))).

Proof. Since Tr(D∗hµDhµu) = d∗d(Tru) then we see that D∗hµDhµ is a well-defined operator

L̂2,p
δ (Ω0(End0(E)))→ Lpδ(Ω

0(End0(E))).

Moreover, D∗hµDhµ preserves the direct sum decomposition Ω0(End(E)) ∼= Ω0(End0(E))⊕Ω0(X)·id
given by u 7→ (u− 1

n(Tru) · id) + 1
n(Tru) · id.

For δ > 0 small enough, the index of the component of D∗hµDhµ on the trivial subbundle of

scalar multiples of the identity can be computed by applying Proposition 2.13 in the rank 1 case,

which shows that this operator is Fredholm of index zero. Since the previous proposition shows

that D∗hµDhµ : L̂2,p
δ (Ω0(End(E))) → Lpδ(Ω

0(End(E))) is Fredholm of index zero, then the same is

true for the restriction of D∗hµDhµu to L̂2,p
δ (Ω0(End0(E))).

The same argument as in the proof of the previous proposition shows that if Fhµ+[φ, φ∗] = 0 then

the same results are true for the restriction of (D′hµ)∗D′hµ and (D′′)∗D′′ to L̂2,p
δ (Ω0(End0(E))) →

Lpδ(Ω
0(End0(E))).

If u ∈ L̂2,p
δ (Ω0(End0(E))) is self-adjoint with respect to the metric, then(

(D′hµ)∗D′hµu
)∗

= (D′′)∗D′′u = (D′hµ)∗D′hµu.

Conversely, if (D′hµ)∗D′hµu is self-adjoint, then

(D′hµ)∗D′hµu =
(

(D′hµ)∗D′hµu
)∗

= (D′′)∗D′′u∗ = (D′hµ)∗D′hµu
∗

and so u−u∗ ∈ kerD′hµ which implies that u must be self-adjoint since D′hµ is injective by assump-

tion. Therefore ifD′hµ is injective then (D′hµ)∗D′hµ maps the self-adjoint sections of L̂2,p
δ (Ω0(End0(E)))

surjectively onto the self-adjoint sections of Lpδ(Ω
0(End0(E))). �
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Remark 2.15. Here we use Biquard’s weighted Sobolev spaces in order to use [6, Thm. 5.1] to

prove Proposition 2.13, which applies in full generality. In the case of a Higgs bundle at a Fuchsian

point in the moduli space, where the Hermitian metric on the bundle determines a hyperbolic

metric on the punctured surface (cf. Corollary 3.3 and Corollary 4.2), Judge [10] develops the

Fredholm theory using a variant of Hölder spaces, which differ from Biquard’s Hölder spaces in [6,

Sec. 4A]. One could also try to extend Judge’s construction to higher rank Higgs bundles, but we

avoid this approach here since Biquard’s theory is already available.

3. Local study

In this section we explicitly describe the nonabelian Hodge correspondence for a fixed Higgs

bundle on the punctured unit disk D0 := D \ {0} with varying weights and prove Proposition 3.1,

which shows that the harmonic bundles with cone angle θ converge as θ → 0 to the harmonic

bundle with a cusp metric studied by Simpson in [18]. This is a local version of the main theorem

of the next section.

The proof is by explicit calculation for the case G = SL(2,C). In the following we fix a filtered

regular Higgs bundle (E, φ, {Eα}) on the punctured disk D0 and a Hermitian-Einstein metric h

on E. From the triple (E, φ, h) one can construct a flat connection D on E which has an as-

sociated holonomy representation ρ : Z → G. The Hermitian-Einstein metric then determines a

Z-equivariant harmonic map h : D̃0 → G/K, where Z = π1(D0) acts on the universal cover D̃0 by

deck transformations and on G/K via the holonomy representation ρ.

Now we study in more detail the sequence of harmonic bundles corresponding to hyperbolic cone

metrics. Let D0 denote the punctured unit disk. In order to define local functions zθ and zβ in the

sequel, choose a branch of log

(3.1) U =
{
z = reiγ ∈ D0 : γ ∈ (−π, π)

}
.

and let E → D0 be a rank 2 complex vector bundle with a trivialisation over U . Define a Higgs

structure on E by taking the trivial holomorphic structure and defining the Higgs field on the

trivialisation over U by

φ(z) =

(
0 0
1
2 0

)
z−1dz

Let w1,0 and w0,1 be a basis for the holomorphic sections of E such that

φ(z)w1,0 =
1

2
w0,1z−1dz, φ(z)w0,1 = 0.

Let E ∼= E1,0 ⊕ E0,1 be the direct sum decomposition with respect to these sections. Define the

Hermitian metric

(3.2) kθ(r) =

( 1
2θ (r−θ − rθ) 0

0 2θ
r−θ−rθ

)
=

(
−1
θ sinh(θ log r) 0

0 − 1
1
θ

sinh(θ log r)

)
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With respect to this metric, we have

(3.3) |w1,0|kθ =
r−

1
2
θ

√
2θ

(1− r2θ)
1
2 = O(r−

1
2
θ), |w0,1|kθ =

√
2θr

1
2
θ

(1− r2θ)
1
2

= O(r
1
2
θ)

and so the weights in the interval [0, 1) are 1
2θ and 1 − 1

2θ. Equation (3.5) below shows that

kθ is an acceptable metric and so the result of [18, Prop. 3.1] shows that there is an associated

filtered bundle which is determined using the growth rate of the sections from equation (3.3)

above. From (2.3) we see that the extension of the bundle E across the puncture at weight zero is

O(E1,0)[−p] ⊕ O(E0,1). At weight 1
2θ the extension of the bundle E0,1 across the puncture jumps

from O(E0,1) to O(E0,1)[−p] and at weight 1− 1
2θ the extension of E1,0 across the puncture jumps

from O(E1,0)[−p] to O(E1,0)[−2p].

In [18, p746], Simpson proves that the metric

(3.4) k0(r) =

(
− log r 0

0 − 1
log r

)
is Hermitian-Einstein with respect to the Higgs bundle (∂̄, φ) on the trivialisation U and writes

down a basis for the flat sections v0,1 and u1,0 of the associated flat connection D0. Explicitly, the

flat connection is given by

D0 = d+

(
1
2 log r 0

1
2 −1

2 log r

)
z−1dz +

(
0 1

2(log r)2

0 0

)
z̄−1dz̄

and the flat sections by v0,1 = w0,1 + w1,0

log r and u1,0 = w1,0 − 1
2 log z w0,1. With respect to this basis

for the flat sections, the associated representation ρ0 : Z → SL(2,C) maps the generator of Z to(
1 π
0 1

)
.

The next result shows that the harmonic bundle and holonomy representation with cone angle

θ converge to the harmonic bundle and holonomy representation with cone angle zero studied by

Simpson.

Proposition 3.1. The metric kθ is Hermitian-Einstein with respect to the Higgs bundle (∂̄, φ) and

kθ depends analytically on θ. The monodromy representation ρθ : Z → SL(2,C) converges to the

representation ρ0 : Z→ SL(2,C).

Proof. Given the metric kθ, the metric connection is given by dθ = ∂̄ + ∂θ, where

∂θ = ∂ +
1

2
θ cotanh(θ log r)

(
1 0
0 −1

)
z−1dz

The Hermitian adjoint of the Higgs field with respect to kθ is

φ∗θ(z) =
θ2

sinh2(θ log r)

(
0 1

2
0 0

)
z̄−1dz̄

A calculation shows that the curvature of kθ is

(3.5) Fkθ = ∂̄(k−1
θ ∂kθ) = − θ2

4r2 sinh2(θ log r)

(
1 0
0 −1

)
dz̄dz
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Therefore |Fkθ | ≤
C

r2(log r)2
in a neighbourhood of r = 0 and so the curvature is acceptable in the

sense of Definition 2.3. We also have

Fkθ + [φ, φ∗θ ] = − θ2

4r2 sinh2(θ log r)

(
1 0
0 −1

)
dz̄dz +

θ2

4r2 sinh2(θ log r)

(
1 0
0 −1

)
dz̄dz = 0.

Therefore the metric is Hermitian-Einstein for all θ and the connection Dθ = ∂̄ + ∂θ + φ + φ∗θ is

flat. As θ → 0, we have 1
2θ (r−θ − rθ) = −1

θ sinh(θ log r) → − log r and, so the metric kθ converges

to k0 and the flat connection Dθ converges to D0.

We can compute the basis elements for the flat sections as follows. Let w0,1 and w1,0 be a basis for

the holomorphic sections of E in the trivialisation over U such that φw1,0 = 1
2z
−1dzw0,1 and φw0,1 =

0. Then d′′θ := ∂̄+φ∗θ has holomorphic sections given by w1,0 and v0,1
θ = w0,1+θ cotanh(θ log r)w1,0.

Note that v0,1
θ → w0,1 + 1

log rw
1,0 =: v0,1

0 as θ → 0. A calculation shows that

d′θw
1,0 =

1

2
v0,1
θ z−1dz, d′θv

0,1
θ =

1

2
θ2w1,0z−1dz

Therefore the sections

s1 = z−
θ
2 (θw1,0 + v0,1

θ ), s2 = z
θ
2 (θw1,0 − v0,1

θ )

are flat with respect to Dθ = d′′θ + d′θ. In this basis it is clear that the parallel transport along a

loop around the puncture is given by (s1, s2) 7→ (e−πiθs1, e
πiθs2). To see that this converges to the

local model given in Simpson in [18, p746], it is more convenient to apply a gauge transformation

and use the basis of flat sections given by

u1,0 =
1

2θ
s1 +

1

2θ
s2 =

1

2
(z−

θ
2 + z

θ
2 )w1,0 +

1

2θ
(z−

θ
2 − z

θ
2 )v0,1

θ

u0,1 =
1

2
s1 −

1

2
s2 =

1

2
θ(z−

θ
2 − z

θ
2 )w1,0 +

1

2
(z−

θ
2 + z

θ
2 )v0,1

θ

As θ → 0, these sections converge to u0,1 = v0,1
0 = w0,1 + 1

log rw
1,0 and u1,0 = w1,0 − 1

2v
0,1
0 log z,

which are the flat sections for the local model from [18, p746]. Therefore the representations

ρθ : Z→ SL(2,C), which map a generator of Z to the elliptic element

(
e−πiθ 0

0 eπiθ

)
∈ SL(2,C) in

the basis defined by s1 and s2, converge (after changing to the basis defined by the sections u1,0

and u0,1) to the representation ρ0 : Z → SL(2,C) from Simpson’s local model [18, p746], which

maps a generator of Z to the parabolic element

(
1 π
0 1

)
∈ SL(2,C).

For this local model on the punctured disk, one can see explicitly that the Hermitian-Einstein

metric

kθ(r) =

( 1
2θ (r−θ − rθ) 0

0 2θ
r−θ−rθ

)
=

(
−1
θ sinh(θ log r) 0

0 − 1
1
θ

sinh(θ log r)

)
depends analytically on the weight 1

2θ. �

Remark 3.2. In Section 4 we will generalise this statement to show that the Hermitian-Einstein

metric on the punctured surface depends analytically on the parabolic weights.
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Proposition 3.1 shows that the model harmonic bundle with cone angle θ and elliptic monodromy

converges to Simpson’s local model [18, p746] with parabolic monodromy. To set up the proof of

Corollary 3.3, we now summarise analogous calculations for a gauge-equivalent local model. Given

β ∈ R, define the following gauge transformation on the trivialisation E → U from (3.1) (recall

that U is a branch of log so that z
1
2
β is well-defined)

gβ(z) :=

(
z−

1
2
β 0

0 z
1
2
β

)
.

Since gβ(z) is holomorphic for z ∈ U , then applying this to the harmonic bundle from the previous

proposition gives us a new harmonic bundle with holomorphic structure ∂̄, with Higgs field on the

trivialisation U given by

φ(z) =

(
0 0

1
2z
β 0

)
z−1dz

and harmonic metric

(3.6) kβ,θ(r) =

(
rβ

2θ (r−θ − rθ) 0

0 2θ
rβ(r−θ−rθ)

)
=

(
− rβ

θ sinh(θ log r) 0

0 − θ
rβ sinh(θ log r)

)
.

Let {w1,0, w0,1} be a basis for the holomorphic sections corresponding to the direct sum E1,0⊕E0,1,

related to the basis used in the previous proof by the gauge transformation gβ. When β = 1, the

growth rate of the sections with respect to the metric (3.6) is now

(3.7) |w1,0|k1,θ ∼ r
1
2

(1−θ), |zw0,1|k1,θ ∼ r
1
2

(1+θ).

This defines the weights used in (3.8) below. Therefore we see that the metric (3.6) on E1,0 ⊕E0,1

corresponds to the growth conditions (3.7) for sections w1,0 of E1,0 and zw0,1 of E0,1[−p]. This

explains why the growth conditions given by (3.8) on the bundle K
1
2 ⊕K−

1
2 [−D] give the correct

weights to construct a metric on K
1
2⊕K−

1
2 in the proof of Corollary 3.3 below. On the trivialisation

U define

v0,1 := zβw0,1 + θ cotanh(θ log r)w1,0.

An analogous calculation to the previous proof shows that {w1,0, v0,1} is a basis for the d′′-

holomorphic sections, and a basis for the flat sections is given by

s1 = z−
1
2

(β+θ)(θw1,0 + v0,1)

s2 = z−
1
2

(β−θ)(θw1,0 − v0,1).

When β = 1 then we can explicitly compute the monodromy ρ′θ : Z → SL(2,C) of a loop around

the origin, which maps a generator of Z to(
e−iπ(1+θ) 0

0 e−iπ(1−θ)

)
= −

(
e−πiθ 0

0 eπiθ

)
.



14 SEMIN KIM AND GRAEME WILKIN

Returning to the case of a general β, we can apply a gauge transformation to the previous basis of

flat sections to obtain a new basis of sections over U

u1,0
β,θ :=

1

2

(
z−

1
2

(β+θ) + z−
1
2

(β−θ)
)
w1,0 +

1

2θ

(
z−

1
2

(β+θ) − z−
1
2

(β−θ)
)
v0,1

u0,1
β,θ :=

θ

2

(
z−

1
2

(β+θ) − z−
1
2

(β−θ)
)
w1,0 +

1

2

(
z−

1
2

(β+θ) + z−
1
2

(β−θ)
)
v0,1.

Note that as θ → 0, these sections converge to

u1,0
β,0 = z−

1
2
β

(
w1,0 − 1

2
log zv0,1

)
u0,1
β,0 = z−

1
2
βv0,1,

which is the tensor product of Simpson’s rank 2 local system (cf. [18, p746]) with Simpson’s rank

one local system with weight −1
2β (cf. [18, p745]).

By applying the nonabelian Hodge theorem to this construction, we obtain a new proof of a

theorem of McOwen [14].

Corollary 3.3 (McOwen). Let X̄ be a compact Riemann surface, and fix a smooth Riemannian

metric g on X with constant Gauss curvature Kg ≡ −1. Let X = X̄ \ {p1, . . . , pm} and fix a

cone angle 2πθj at each pj. Suppose also that 2g − 2 + m −
∑m

j=1 θj > 0. Then there exists a

metric ĝ conformal to g with constant curvature Kĝ ≡ −1 such that for each j = 1, . . . ,m we have

ĝ/g = O(r2(θj−1)) as r → 0, where r is the distance to the puncture pj.

Proof. First we define the filtered Higgs bundle as follows. Let K denote the canonical bundle of the

compact surface X̄, and choose a line bundle K
1
2 → X̄ so that

(
K

1
2

)2
= K. Let D = p1 + · · ·+ pn

denote the effective divisor corresponding to the marked points, let E0 = K
1
2 ⊕ K−

1
2 [−D] be a

bundle over X̄ and let E denote the restriction to X. Note that (K
1
2 )∗ ⊗ K−

1
2 [−D] ⊗ K[D] is

trivial, and define the Higgs field

φ =
1

2

(
0 0
1 0

)
∈ H0(End(E0)⊗K[D]).

For each α ∈ [0, 1), define the divisors

D1(α) =

m∑
j=1

εjpj , where εj =

{
0 ifα < 1

2(1− θj)
1 ifα ≥ 1

2(1− θj)

D2(α) =
m∑
j=1

ε′jpj where ε′j =

{
0 ifα < 1

2(1 + θj)

1 ifα ≥ 1
2(1 + θj)

(3.8)

Note that if θj ∈ (0, 1) (i.e. the cone angle is between 0 and 2π) then these are both trivial when

α = 0. For each α ∈ [0, 1), the associated extension of E across the punctures is then given by

Eα = K
1
2 [−D1(α)]⊕K−

1
2 [−D2(α)−D].

In particular, we see that E0 = K
1
2 ⊕K−

1
2 [−D]. Note that in a neighbourhood of a single puncture,

this reduces to the description of the filtered bundle associated to the local model with metric (3.6)
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and growth rate (3.7). The algebraic degree of the filtered bundle is

deg(E, {Eα}) = degE0 +

m∑
j=1

1

2
(1− θj) +

m∑
j=1

1

2
(1 + θj) = −m+m = 0.

The only filtered Higgs subbundle is (K−
1
2 [−D], {K−

1
2 [−D2(α)−D]}α), which has degree

deg(K−
1
2 [−D], {K−

1
2 [−D2(α)−D]}α) = degK−

1
2 [−D] +

m∑
j=1

1

2
(1 + θj)

= 1− g − 1

2
m+

m∑
j=1

1

2
θj .

Therefore the algebraic stability condition

slope(K−
1
2 [−D], {K−

1
2 [−D2(α)−D]}α) < slope(E, {Eα})

reduces to

(3.9) 1− g − 1

2
m+

m∑
j=1

1

2
θj < 0 ⇔ 2g − 2 +m−

m∑
j=1

θj > 0.

Since the filtered Higgs bundle (E, φ, {Eα}) is algebraically stable, then Theorem 2.9 guarantees

the existence of a Hermitian metric h solving Fh + [φ, φ∗] = 0 such that the growth rate of the

sections on K
1
2 ⊕K−

1
2 [−D] is given by (3.7). Equivalently, the induced metric ĥ on K

1
2 ⊕K−

1
2 is

asymptotic to the model cone metric kβ,θj from (3.6) with β = 1 around each marked point pj .

Let g = e2u|dz|2 be a hyperbolic metric on the compact surface TX̄ = K−1 with constant scalar

curvature Kg ≡ −1, and let h =

(
e−u 0
0 eu

)
be the induced metric on K

1
2 ⊕K−

1
2 . Let λ : X → R

be the conformal factor such that

ĥ =

(
e−u−λ 0

0 eu+λ

)
.

Then the self-duality equations Fĥ + [φ, φ∗] = 0 imply that the metric ĝ = e2u+2λ|dz|2 on the

punctured surface also has constant scalar curvature Kĝ ≡ −1 (cf. Example 1.5 of [8]). Since ĥ is

asymptotic to k1,θj near pj , then in a local coordinate with distance r from the marked point pj ,

the metric ĝ is asymptotic to

ĝ

g
= e2λ ∼

θ2
j

r2 sinh2(θj log r)
= r2(θj−1)

(
4θ2
j

(r2θj − 1)2

)
∼ r2(θj−1).

Therefore ĝ is a metric with constant curvature Kĝ ≡ −1 which satisfies the conditions of the

theorem. �

4. The limiting bundle as the cone angle converges to zero

In this section we show that for a fixed algebraically stable parabolic Higgs bundle (E, φ, {Eα})
on a punctured surface, the harmonic metric depends analytically on the weights and the Higgs

bundle (Theorem 4.1). A special case of Theorem 4.1 gives a Higgs bundle proof of a theorem of
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Judge on the analytic dependence of hyperbolic cone and cusp metrics within a given conformal

class (Corollary 4.2).

Throughout this section we restrict attention to weights and filtrations such that the algebraic

degree (2.1) is zero. Fix p > 2n = 2 dimCX and let δ > 0 be small enough so that Proposition 2.13

applies. Let H := H
2,p
δ denote the space of metrics on the bundle E → X from (2.9).

When considering varying weights, it is more convenient to use the description of a parabolic

bundle consisting of a set of weights and a filtration {Ep,α} of the fibre over each marked point,

which together with the residue of the Higgs field determines a model metric (2.5). We use

µ0 = {α1, . . . , αn} to denote the set of weights of the parabolic structure, i.e. the set of values

of α in [0, 1) where dimC Grα(Ep,0) > 0. Since algebraic stability is an open condition (cf. [20])

then the parabolic Higgs bundle remains stable for all Higgs bundles (∂̄A, φ), weights µ and fil-

trations {Ep,β} compatible with µ and Resp φ in a neighbourhood of the initial parabolic bundle

(∂̄A0 , φ0, µ0, {Ep,α}). Note that in Corollary 4.2 below we fix the Higgs bundle and so the residue

Resp φ is fixed, however as the weights change then the dimensions of each Grα(Ep,0) may change,

so the weight filtration may change and therefore the logarithmic terms in the model metric (2.5)

may change. An example of this is given by the local model studied in Proposition 3.1 where the

weight filtration is trivial for θ 6= 0 (since the weights are distinct) and non-trivial in the limit as

θ → 0, hence the appearance of logarithmic terms in the local model (3.4) studied by Simpson.

Corollary 4.2 below explains the connection between this phenomena and hyperbolic cone metrics

converging to a cusp metric on a punctured surface.

From the perspective of flat connections and representations, when the weight filtration is trivial

then the associated flat connection Dµ0 determines a representation ρµ0 : π1(X0)→ G with elliptic

holonomy around the marked point, and parabolic terms appear in the holonomy when the weight

filtration becomes non-trivial, exactly as described by the rank 2 local model in the previous section.

Given a punctured surface X = X̄ \ {p1, . . . , pn} and a bundle E → X, let B̃ denote the space of

parabolic Higgs bundles of algebraic degree zero on E. Given a fixed algebraically stable parabolic

Higgs bundle (∂̄A0 , φ0, µ0, {Ep,α}), let Ũ be a neighbourhood of (∂̄A0 , φ0, µ0, {Ep,α}) in B̃, such that

any (∂̄A, φ, µ, {Ep,β}) ∈ Ũ is algebraically stable. Theorem 2.9 determines a map Ũ → H.

Let B denote the space of triples (∂̄A, φ, µ) such that there exists a filtration {Ep,β} for which

(∂̄A, φ, µ, {Ep,β}) is algebraically stable. There is a map B̃→ B obtained by forgetting the filtration

{Ep,β}. Let U be the image of Ũ under this map. Given a choice of metric hp on Ep,0 used in

the definition of model metric (2.5), any two filtrations compatible with (∂̄A, φ, µ) are related by a

change of coordinates which is unitary with respect to hp. Let H0 denote the quotient of the space

of metrics H by coordinate changes which are unitary with respect to hµ0 . Then the map Ũ → H

descends to a well-defined map U → H0.

Since (∂̄A0 , φ0) is stable and hence irreducible, then one can use the inverse function theorem

in analogy with the Kuranishi method (cf. [12, Ch. VII.3]) to define a local diffeomorphism

K : Ω0,1(End(E)) ⊕ Ω1,0(End(E)) → Ω0,1(End(E)) ⊕ Ω1,0(End(E)) with the property that that
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(a, ϕ) solves the nonlinear equation ∂̄A0+a(φ0 +ϕ) = 0 if and only if K(a, ϕ) solves the linearisation

of the slice equations. The explicit form of K (cf. [12, (3.10)]) shows that it is analytic in (a, ϕ),

and so for the definition of the operator F : U × L̂2,p
δ → Lpδ in (4.4) below one can define precisely

what it means for F to be an analytic map of Banach spaces.

Theorem 4.1. The map U 7→ H0 given by (a, ϕ, µ) 7→ hµ is analytic.

Proof. Following the idea of [10] for hyperbolic metrics on a punctured surface, the goal of the

proof is to use the implicit function theorem to construct the Hermitian-Einstein metric hµ for

weights µ near µ0 and Higgs bundles (∂̄A, φ) near (∂̄A0 , φ0), in which case the analytic dependence

of the metric on (∂̄A, φ, µ) follows immediately from the implicit function theorem and the fact

that the equation (4.4) for the metric depends analytically on (∂̄A, φ, µ). It is important to note

that we are not using the full power of the implicit function theorem, since we already know that

Hermitian-Einstein metrics exist and are unique by the nonabelian Hodge theorem. Instead we

only use the part of the theorem which shows that the solution depends analytically on the other

variables. This still requires showing that the linearised operator (4.5) defines an isomorphism of

Banach spaces, which we prove below.

Following Simpson’s notation from [19], with respect to the fixed Higgs bundle (∂̄A0 , φ0), let

D′′ = ∂̄A0 + φ0 : Ω0(End(E)) → Ω1(End(E)). With respect to a metric h, we use D′h to denote

the operator ∂A0,h +φ∗h0 : Ω0(End(E))→ Ω1(End(E)) and Dh = D′′+D′h to denote the associated

connection. Then

D2
h = D′′D′h +D′hD

′′ = FA0,h + [φ0, φ
∗h
0 ].

Given two metrics h1 and h2 related by h2 = h1k for k = g∗g, g ∈ GC, the change in the curvature

is given by

g−1
(
FA0,h2 + [φ0, φ

∗h2
0 ]
)
g = D′′(k−1D′h1k) + FA0,h1 + [φ0, φ

∗h1
0 ].

Now suppose that hA0,µ0 is the Hermitian-Einstein metric from the nonabelian Hodge theorem

for the algebraically stable Higgs pair (∂̄A0 , φ0) with weight µ0. Then Λ(FA0,hµ0
+ [φ0, φ

∗hµ0
0 ]) = 0,

and given (∂̄A, φ, µ) ∈ U with (∂̄A, φ) = (∂̄A0 +a, φ0 +ϕ), we want to solve Λ(FA,hµ + [φ, φ∗hµ ]) = 0

for hµ = hµ0kµ0,µ. Equivalently, choose δ small enough so that Proposition 2.13 applies, define

u ∈ L̂2,p
δ (Ω0(End(E)) such that

eu = h−1
mod,µhmod,µ0kµ0,µ ⇔ hµ = hµ0h

−1
mod,µ0

hmod,µe
u

and define the operator F : U × L̂2,p
δ → Lpδ by

(4.1) F (a, ϕ, µ, u) = Λ
(
FA,hµ + [φ, φ∗hµ ]

)
Since hµ0 is Hermitian-Einstein with respect to (∂̄A0 , φ0) then F (0, 0, µ0, 0) = 0. It now remains

to compute the Fréchet derivative of F with respect to u at µ = µ0 and (u, a, ϕ) = 0 and show that

this is surjective. First note that the above equation shows that

(4.2) iΛD′′(k−1
µ0,µD

′
µ0kµ0,µ) = iΛ

(
g−1

(
FA0,hµ + [φ0, φ

∗hµ
0 ]

)
g −

(
FA0,hµ0

+ [φ0, φ
∗hµ0
0 ]

))
.
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and a standard calculation shows that(
FA,hµ + [φ, φ∗hµ ]

)
−
(
FA0,hµ + [φ0, φ

∗hµ
0 ]

)
= −∂̄A0a

∗hµ + ∂A0,hµa+ [φ0, ϕ
∗hµ ] + [ϕ, φ

∗hµ
0 ]− [a, a∗hµ ] + [ϕ,ϕ∗hµ ]

= D′′(−a∗hµ + ϕ∗) +D′hµ(a+ ϕ)− [a, a∗hµ ] + [ϕ,ϕ∗hµ ]

Therefore, if FA0,hµ0
+ [φ0, φ

∗hµ0
0 ] = 0, then our desired equation FA,hµ + [φ, φ∗hµ ] = 0 becomes

iΛD′′(k−1
µ0,µD

′
µ0kµ0,µ) + ig−1Λ

(
D′′(−a∗hµ + ϕ∗hµ ) +D′hµ(a+ ϕ)− [a, a∗hµ ] + [ϕ,ϕ∗hµ ]

)
g = 0.

Simpson’s Kähler identities (cf. [19, p15]) show that iΛD′′ = (D′µ0)∗ on 1-forms, and so the equation

becomes

(4.3)

g(D′µ0)∗(k−1
µ0,µD

′
µ0kµ0,µ)g−1 + iΛ

(
D′′(−a∗hµ + ϕ∗hµ ) +D′hµ(a+ ϕ)− [a, a∗hµ ] + [ϕ,ϕ∗hµ ]

)
= 0.

Therefore

(4.4) F (a, ϕ, µ, u) = g(D′µ0)∗(e−uh−1
mod,µhmod,µ0D

′
µ0(h−1

mod,µ0
hmod,µe

u))g−1

+ iΛ
(
D′′(−a∗hµ + ϕ∗hµ ) +D′hµ(a+ ϕ)− [a, a∗hµ ] + [ϕ,ϕ∗hµ ]

)
,

where to simplify the notation we use hµ = hµ0kµ0,µ = hµ0h
−1
mod,µ0

hmod,µe
u in the second line of the

above equation.

The Fréchet derivative of (4.4) with respect to u at µ = µ0 and (u, a, ϕ) = 0 is the operator

(4.5) (D′µ0)∗D′µ0 : L̂2,p
δ (Ω0(End(E))→ Lpδ(Ω

0(End(E)).

Since the initial parabolic Higgs bundle is algebraically stable, then it is irreducible and so kerDµ0

consists of the constant scalar multiples of the identity. In particular, the restriction of Dµ0 to

L̂2,p
δ (Ω0(End0(E))) is injective, therefore Corollary 2.14 shows that (D′µ0)∗D′µ0 is injective. Corol-

lary 2.14 also shows that the restriction of (D′µ0)∗D′µ0 to L̂2,p
δ (Ω0(End0(E))) has index zero, and

therefore it is surjective onto Lpδ(Ω
0(End0(E))).

Taking the trace of (4.4) shows that the component of the image of F in the subbundle of scalar

multiples of the identity is contained in the image of d∗, the restriction of D∗µ0 to this subbundle.

Since D∗µ0Dµ0 is Fredholm on spaces of both zero and one-forms by [6, Thm. 5.1], then this

component of the image of F is then contained in the image of the restriction of D∗µ0Dµ0 to the

subbundle of scalar multiples of the identity. Again, since the curvature is zero then the images of

D∗µ0Dµ0 and (D′µ0)∗D′µ0 coincide.

In summary, we have shown that F (a, ϕ, µ, u) ∈ im(D′µ0)∗D′µ0 and therefore we can now ap-

ply the analytic implicit function theorem for Banach spaces (cf. [4]) to show that the equation

F (a, ϕ, µ, u) = 0 has a unique solution given by u = u(a, ϕ, µ) in a neighbourhood of (0, 0, µ0, 0)

and that u(a, ϕ, µ) depends analytically on the weight µ and the perturbation (a, ϕ) of the Higgs

bundle. Moreover, Theorem 2.9 shows that u(a, ϕ, µ) is bounded. �
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If we consider a rank 2 Higgs bundle (E, φ) at a Fuchsian point in the moduli space of stable

Higgs bundles as in [8, Sec. 11] (Higgs bundles over compact surfaces) and [7] (parabolic Higgs

bundles) then we can use the previous theorem together with the proof of Corollary 3.3 to obtain

the following theorem of Judge [10].

Corollary 4.2. Let X̄ be a compact Riemann surface of genus g with m marked points {p1, . . . , pm}
such that 2g − 2 + m > 0 and let X = X̄ \ {p1, . . . , pm}. Let g0 be the unique complete metric on

X, isometric to a model cusp on a neighbourhood of each marked point p1, . . . , pm. For each choice

θ = {θ1, . . . , θm} of cone angles at p1, . . . , pm such that 2g − 2 + m −
∑m

k=1 θk > 0, let gθ be the

unique metric on X which is conformal to g0 such that (X, gθ) is isometric to a model cone of angle

θj on a neighbourhood of each marked point pj. Then the map θ 7→ gθ is analytic.
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