
ANTI-HOLOMORPHIC INVOLUTIVE ISOMETRY OF
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Abstract. We study complex Lagrangian submanifolds of a compact hyper-Kähler
manifold and prove two results: (a) that an involution of a hyper-Kähler manifold which
is antiholomorphic with respect to one complex structure and which acts non-trivially
on the corresponding symplectic form always has a fixed point locus which is complex
Lagrangian with respect to one of the other complex structures, and (b) there exist
Lagrangian submanifolds which are complex with respect to one complex structure and
are not the fixed point locus of any involution which is anti-holomorphic with respect to
one of the other complex structures.

1. Introduction

Let (X,ωI , ωJ , ωK , g) be a hyper-Kähler manifold. In this paper we study submanifolds

of X which are complex Lagrangian (of B type) with respect to one of the complex

structures I, J,K and Lagrangian (of A type) with respect to the Kähler form associated

to the other two complex structures. The motivation for this comes from the paper of

Kapustin and Witten [11], where they study such submanifolds of the moduli space of

Higgs bundles MH over a compact Riemann surface. The most interesting examples

are called (B,A,A) branes, (A,B,A) branes and (A,A,B) branes (cf. [11, Sec. 5.6]).

Recently, a number of authors have constructed discrete families of (A,B,A) branes in

MH via anti-holomorphic involutions on MH (see [1], [2], [4], [9]).

In this paper we prove two results related to complex Lagrangian submanifolds of hyper-

Kähler manifolds. The first one (see Section 2) describes the geometric structure on the

fixed point locus of an anti-holomorphic involution.

Theorem 1.1. Let X be a hyper-Kähler manifold of complex dimension 2d and let I be

one of the complex structures with associated Kähler form ωI . Let σ : X −→ X be an

involution such that σ is anti-holomorphic with respect to I and that σ∗ωI = −ωI . Fix

an element θ ∈ H0(X, Ω2
X) \ {0} (holomorphic with respect to I) such that σ∗θ = θ̄

and the pointwise norm of θ is 2
√
d. Let θJ and θK be the holomorphic symplectic forms

with respect to J and K respectively. Assume that the fixed point locus S = Xσ ⊂ X is

nonempty. Then
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• the fixed point locus S is a special Lagrangian submanifold with respect to both

(ωI , θ
d) and (ωK , θ

d
K), and

• S is a complex Lagrangian manifold with respect to (J, θJ).

The second result (see Section 3) is that deformations of these examples give complex

Lagrangian submanifolds that are not fixed points of any anti-holomorphic involution.

Theorem 1.2. Let X be a hyper-Kähler manifold of complex dimension 2d and let I be

one of the complex structures with associated Kähler form ωI . Let σ : X −→ X be

an involution such that σ is anti-holomorphic with respect to I and that σ∗ωI = −ωI .
Suppose that the fixed point set S is compact and has positive first Betti number. Then

there exist continuous families of complex Lagrangian submanifolds of X that are not fixed

points of an anti-holomorphic involution σ : X −→ X.

It is natural to ask whether one can construct new examples of (A,B,A) branes in the

moduli space of Higgs bundles via deformations of the discrete families in [1], [2], [4] and

[9].

2. The fixed point set of an anti-holomorphic involution on a

hyper-Kähler manifold

In this section we prove Theorem 1.1, which describe the geometric structures on the

fixed point locus of the involution σ.

A hyper-Kähler manifold is a quintuple (X , g , I , J ,K), where X is a connected smooth

manifold, g is a Riemannian metric on X and I, J , K are integrable almost complex

structures on X such that

(1) I, J and K are orthogonal with respect to g,

(2) the Hermitian forms for (I , g), (J , g) and (K , g) are closed, and

(3) K = IJ = −JI, J = −IK = KI and I = JK = −KJ .

(See [10].) The hyper-Kähler manifold is called irreducible if the holonomy of the Levi–

Civita connection corresponding to g has holonomy Sp(m/4), where m = dimRX.

Let (X , g , I , J ,K) be a compact irreducible hyper-Kähler manifold of real dimension

4d. Let ω be the Kähler form for (I , g). Let

(2.1) σ : X −→ X

be an anti-holomorphic involution with respect to I such that

σ∗ω = −ω .

Since σ is anti-holomorphic with respect to I, we have σ∗I = −I. We should emphasize

that a general hyper-Kähler manifold does not admit such an involution. See [12], [5] for

examples of K3 surfaces admitting such involution (see also [14], [15]).
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Henceforth, unless specified otherwise, I would be taken as the complex structure on

X. So all holomorphic objects on X are with respect to I (unless specified otherwise).

For example, ΩX denotes the holomorphic cotangent bundle of X with respect to I.

Since the hyper-Kähler manifold X is irreducible, we have dimH0(X, Ω2
X) = 1 [3, p.

762, Proposition 3(ii)]. Take any nonzero element θ′ ∈ H0(X, Ω2
X). We have

(2.2) σ∗θ′ = c · θ′ ,

where c ∈ C \ {0}. From (2.2) we have

σ∗σ∗θ′ = ccθ′ .

Since σ ◦ σ = IdX , this implies that |c| = 1. Setting θ :=
√
c̄ θ′, we obtain σ∗θ = θ.

Fix an element θ ∈ H0(X, Ω2
X) \ {0} such that

(1) σ∗θ = θ, and

(2) the pointwise norm of θ with respect to g is 2
√
d.

Such a section θ exists because the holomorphic 2-forms on X are covariant constant with

respect to the Levi-Civita connection on (X , g). Note that any two such choices differ by

multiplication with −1.

Lemma 2.1. The involution σ has the following properties:

(1) It is an isometry for the Riemannian structure g on M .

(2) σ∗Re(θ) = Re(θ), where Re(θ) is the real part of θ.

(3) σ∗Im(θ) = −Im(θ), where Im(θ) is the imaginary part of θ.

Proof. We recall that ω(α , β) = g(I(α) , β), where α and β are real tangent vectors at a

point of X. Since σ∗I = −I and σ∗ω = −ω, the first statement follows. The remaining

two statements follow from the fact that σ∗θ = θ. �

Let

(2.3) S = Xσ ⊂ X

be the subset fixed pointwise by σ. Assume that S is nonempty. This S is a real manifold

of dimension 2d, but it need not be connected. The complex dimension of X being

even, the involution σ is orientation preserving. Let N be the normal bundle of S. As

the differential of σ acts on N as multiplication by −1, and the rank of N is even, we

conclude that dσ preserves the orientation of N . Since σ is orientation preserving and dσ

preserves the orientation of N , it follows that S is oriented.

Lemma 2.2. The fixed point locus S is a special Lagrangian submanifold with respect to

(ω , θd).

Proof. Let

ι : S ↪→ X
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be the inclusion map. We have ι∗σ∗ω = ι∗ω because S is fixed pointwise by σ. On the

other hand, σ∗ω = −ω. Combining these we get that

ι∗ω = 0 .

Therefore, S is Lagrangian with respect to the Kähler form ω.

To prove that S is special Lagrangian we need to show that

(2.4) ι∗Im(θd) = 0 ,

where Im(θd) is the imaginary part of the (2d , 0)-form θd.

We have ι∗σ∗θ = ι∗θ because S is fixed pointwise by σ. On the other hand, from

Lemma 2.1(3),

ι∗Im(θ) = −ι∗Im(θ) .

Combining these it follows that ι∗Im(θ) = 0. This immediately implies that (2.4) holds.

So S is a special Lagrangian manifold. �

Let J be the almost complex structure on X uniquely given by the equation

(2.5) Re(θ)(α , β) = g(J(α) , β) ,

where α and β are real tangent vectors at a point of X. Similarly, K is the almost complex

structure on X that satisfies the equation

(2.6) Im(θ)(α , β) = g(K(α) , β) .

Both (X , J , g) and (X ,K , g) are Kähler manifolds, in particular, both J and K are

integrable. Let ωJ and ωK be the Kähler forms for (J , g) and (K , g) respectively. So,

from (2.5) and (2.6),

(2.7) Re(θ)(α , β) = ωJ(α , β) and Im(θ)(α , β) = ωK(α , β)

We recall that

(2.8) θJ := ωK +
√
−1ω and θK := ωJ +

√
−1ω

are holomorphic symplectic forms on the Kähler manifolds (X , J , g) and (X ,K , g) re-

spectively.

Proposition 2.3. The involution σ is holomorphic with respect to J , and it is anti-

holomorphic with respect to K. Also,

σ∗ωJ = ωJ and σ∗ωK = −ωK .

Furthermore,

σ∗θJ = −θJ and σ∗θK = θK ,

where θJ and θK are defined in (2.8).
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Proof. In view of Lemma 2.1(1) and Lemma 2.1(2), from (2.5) we conclude that σ pre-

serves J . Similarly, from Lemma 2.1(1), Lemma 2.1(2) and (2.6) it follows that σ takes

K to −K.

From Lemma 2.1(2) and (2.7) it follows that σ∗ωJ = ωJ . From 2.1(3) and (2.7) it

follows that σ∗ωK = −ωK .

Since σ∗ω = −ω and σ∗ωK = −ωK , from (2.8) it follows that σ∗θJ = −θJ . Also, as

σ∗ωJ = ωJ , we have σ∗θK = θK . �

Corollary 2.4. The fixed point locus S is a special Lagrangian submanifold with respect

to (ωK , (θK)d).

Proof. Since σ is anti-holomorphic with respect to K, σ∗ωK = −ωK and σ∗θK = θK ,

the proof of Lemma 2.2 goes through. �

Corollary 2.5. The fixed point locus S is a complex Lagrangian submanifold with respect

to (J , θJ).

Proof. Since σ is holomorphic with respect to J , it follows that S is a complex submanifold

with respect to J . As σ∗θJ = −θJ , it is straightforward to deduce that S is a Lagrangian

submanifold with respect to the holomorphic symplectic structure θJ . �

3. Deformations of complex Lagrangian submanifolds

Let (X ,ωc) be a complex manifold of complex dimension 2d equipped with a holo-

morphic symplectic form ωc. Let Y ⊂ X be a complex Lagrangian submanifold (i.e., ωc

vanishes on Y ). Suppose also that X has a Kähler structure and that Y is compact. In

[8], Hitchin studies the deformation space of compact complex Lagrangian submanifolds

near Y and shows that

(1) the deformations are unobstructed (see also [13]),

(2) there exists a local moduli space M with real dimension equal to the first Betti

number of Y , dimR T[Y ]M = b1(Y ), and

(3) M has a naturally induced special Kähler structure.

For an irreducible compact hyper-Kähler manifold of complex dimension 2d, we have

TX = Ω2d−1
X , where TX is the holomorphic tangent bundle, because Ω2d

X is holomorphi-

cally trivial. Hence

H0(X, TX) = H0(X, Ω2d−1
X ) = 0

(see [3, p. 762, Proposition 3(ii)]). This implies that the group of holomorphic automor-

phisms of X is discrete. Any two anti-holomorphic involutions on X differ by a holomor-

phic automorphism, so there are at most countably many anti-holomorphic involutions

X.

Therefore we have the following:
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Theorem 3.1. Let (X,ω) be a compact hyper-Kähler manifold equipped with an anti-

holomorphic involution σ such that σ∗ω = −ω. Suppose that the fixed point set S satisfies

b1(S) > 0. Then there exist complex Lagrangian submanifolds of X that are not fixed

points of an anti-holomorphic involution X −→ X.

Let X be a K3 surface with an involution σ which is anti-holomorphic with respect to

one of the complex structures I. Then there is a σ-invariant hyper-Kähler metric on X

and σ is anti-symplectic with respect to ωI and holomorphic with respect to one of the

complex structures orthogonal to the original one (cf. [6, pp. 21-22]).

Explicit examples of such anti-holomorphic involutions of K3 surfaces with b1(S) > 0

can be found in [12] (see [12, Section 3.4] and [12, Section 3.8]). Gross and Wilson have

also studied such involutions on K3 surfaces in the context of mirror symmetry in [7].
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