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1. Introduction

In classical Morse theory, manifolds are smooth and finite dimensional, and critical
points are isolated and non-degenerate. Nearly 50 years ago Palais expanded the theory
to cover infinite dimensional manifolds. Subsequent developments showed how to cope
if critical points are replaced by non-degenerate critical submanifolds (Bott, [6]) and if
the non-degeneracy condition is relaxed to allow (possibly singular) critical sets that are
contained in a minimising manifold (Kirwan, [37]). The full range of such phenomena
appear in the settings described in this paper, with key ideas descending directly from
Palais’s work. Given that the first author is a mathematical grandchild and the second
author is from the next generation in the Palais family tree, this birthday offering is
thus both by, and about, Palais’s mathematical descendants.

The setting for this paper is the theory of Higgs bundles over a closed Riemann sur-
face, say X. Higgs bundles were first introduced by Nigel Hitchin in his landmark 1987
paper [34], though the name was first introduced by the other pioneer in the subject,
namely Carlos Simpson, in his 1988 paper [53]. In both cases, the objects introduced
correspond to Higgs bundles associated to complex groups (actually SL(n, C)); in this
paper we will adopt the more general notion (introduced by Hitchin in [35]) of Higgs
bundles for real reductive Lie groups. We call these objects G-Higgs bundles, where G
is the real group. This will allow us to explore a wider range of phenomena. In the
spirit of this review, we focus on phenomena detected using Morse-theoretic ideas.

The main objects of study are the finite dimensional moduli spaces of G-Higgs bun-
dles. A fundamental feature of these spaces is that they admit several complementary
interpretations. They have an algebraic interpretation as a moduli space of polystable
objects in the sense of Geometric Invariant Theory, but can also be viewed as moduli
spaces of solutions to gauge-theoretic equations. In some cases they can be identi-
fied with a representation variety for representations of the fundamental group π1(X).
Related to these different points of view, there are two natural ways to apply Morse-
theoretic ideas to the study of the topology of these moduli spaces.

The first way is to view the moduli space as a quotient space of the infinite dimensional
space of connections and Higgs fields on a principal bundle. The Morse function in
this setting is a natural energy functional, the so-called Yang-Mills-Higgs functional,
which, crucially, satisfies an equivariant version of the famous Palais-Smale Condition
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C along complex gauge orbits. The absolute minimum of this functional is a gauge
invariant analytic subspace and the orbit space is the moduli space of interest. This
finite dimensional moduli space has its own natural choice of Morse function known as
the Hitchin function. The second type of Morse theory is based on this Hitchin function.

After introducing G-Higgs bundles in Section 2, in Section 3 we describe the infinite
dimensional Morse theory for the Yang-Mills-Higgs functional and in Section 4 we dis-
cuss the finite dimensional Morse Theory for the Hitchin function. This paper is mostly
a review of a still-evolving body of work and and, apart from Theorem 3.8 in Section
3.2, contains essentially no new results.

2. G-Higgs bundles

2.1. Definitions. Let G be a real reductive Lie group. While the precise definition
requires some care (see for example Knapp [38, p. 384]), it is sufficient for our purposes
to take G to be the real form of a complex reductive group. In fact, in this paper the
main complex groups that will appear are GL(n, C) and SL(n, C). The definition of a
G-Higgs bundle requires the following additional data:

• a maximal compact subgroup H ⊂ G
• a Cartan involution θ giving a decomposition of the Lie algebra

g = h ⊕ m

into its ±1-eigenspaces, where h is the Lie algebra of H , and
• a non-degenerate Ad-invariant and θ-invariant bilinear form, B, on g.

Given the above choices, the Lie algebra satisfies

[h, h] ⊂ h, [h, m] ⊂ m, [m, m] ⊂ h.

and hence the adjoint representation restricts to define a linear representation of H on
m. This action extends to a linear holomorphic action

ι : HC → GL(mC). (2.1)

called the isotropy representation.

Definition 2.1. A G-Higgs bundle on X is a pair (EHC , ϕ), where EHC is a holo-
morphic HC-principal bundle over X and ϕ is a holomorphic section of EHC(mC) ⊗ K,
where EHC(mC) = EHC ×HC mC is the mC-bundle associated to EHC via the isotropy
representation and K is the canonical bundle of X.

Example 2.2. If G is compact them H = G and m = {0}. A G-Higgs bundle is thus
equivalent to a holomorphic GC-bundle.

Example 2.3. If G is the underlying real group of a complex reductive group then
HC = G and mC = ig = g. In this case a G-Higgs bundle is a pair (E, ϕ), where E is a
holomorphic G-principal bundle over X and ϕ is a holomorphic section of ad(E)⊗K. In
particular, if G = GL(n, C) and we replace the principal G-bundle by the rank n vector
bundle determined by the standard representation, then a GL(n, C)-Higgs bundle
is a pair (V, ϕ), where V is a rank n holomorphic vector bundle over X and ϕ is a
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G H HC mC

SL(n, R) SO(n) SO(n, C) Homsym
0 (Cn, Cn)

Sp(2n, R) U(n) GL(n, C) Sym2(Cn) ⊕ Sym2((Cn)∗)
U(p, q) U(p) × U(q) GL(p, C) × GL(q, C) Hom(Cp, Cq) ⊕ Hom(Cq, Cp)
Table 1. Examples of Cartan decompositions of real reductive groups

G Bundle(s) Higgs field
SL(n, R) V (rank n) ϕ : V −→ V ⊗ K

orthogonal symmetric, Tr(ϕ) = 0

Sp(2n, R) V (rank n) ϕ = (β, γ),

{

β : V ∗ −→ V ⊗ K

γ : V −→ V ∗ ⊗ K

(degree d) βt = β; γt = γ

U(p, q) V1 (rank p) ϕ = (β, γ),

{

β : V1 −→ V2 ⊗ K

γ : V2 −→ V1 ⊗ K

V2 (rank q)
Table 2. The G-Higgs bundles with EHC replaced by vector bundle(s)

holomorphic map ϕ : V → V ⊗ K. If we take G = SL(n, C) then an SL(n, C)-Higgs
bundle is also a pair (V, ϕ) but det(V ) is trivial and ϕ has zero trace.

Example 2.4. In Table 1 we describe the structure of SL(n, R), Sp(2n, R) and U(p, q) as
real reductive groups. In each case there is a Cartan involution given by θ(u) = −u∗,
which induces the Cartan decomposition given in the table. Table 2 describes the
associated G-Higgs bundles and their vector bundle representation for these examples
of real reductive groups. Thus for example the data defining a U(p, q)-Higgs bundle
on a Riemann surface X is equivalent to the tuple (V1, V2, β, γ) where V1 and V2 are
respectively rank p and rank q holomorphic vector bundles on X and the maps

β :V1 −→ V2 ⊗ K

γ :V2 −→ V1 ⊗ K

define the Higgs field (here K is the canonical bundle on X). 1 The case of Sp(2n, R)
is explained further in Example 4.7.

2.2. Moduli spaces. Two G-Higgs pairs (EHC, ϕ) and (E ′
HC , ϕ

′) are isomorphic if

there is an isomorphism f : EHC

≃
−→ E ′

HC such that ϕ = f ∗ϕ′ where f ∗ is the obvious
induced map. Loosely speaking, a moduli space for G-Higgs bundles is a geometric
space whose points parameterize isomorphism classes of pairs (E, ϕ). In general the
space of all isomorphism classes has bad topological properties; for example, it may
not even be Hausdorff. One standard solution to this problem is provided by Geomet-
ric Invariant Theory (GIT) notions of stability and polystability. The point of these
stability properties is to identify the isomorphism classes for which a suitable moduli

1For more details see [10], [26], [35].
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space can be constructed. Constructions of this sort for moduli spaces of holomor-
phic bundles have a long history going back to the work of Narasimhan and Seshadri
([44]). The appropriate notions of stability and polystability have been formulated in
very general terms for G-Higgs bundles in [27]. While the general definitions are quite
cumbersome, in many special cases they simplify to conditions akin to slope stabil-
ity/semistability/polystability for holomorphic bundles.

Example 2.5. Let G = GL(n, C) and let (V, Φ) be a G-Higgs bundle over a Riemann
surface X (as in Example 2.3). The Higgs bundle (V, Φ) is defined to be semistable if

deg(V ′)

rank(V ′)
6

deg(V )

rank(V )
(2.2)

for all Φ-invariant subbundles V ′ ⊂ V . The Higgs bundle is stable if the inequality in
(2.2) is strict for all proper invariant subbundles, and it is polystable if it decomposes
as a direct sum of stable Higgs bundles all with the same slope (where the slope of a

bundle V is the ratio deg(V )
rank(V )

).

Definition 2.6. The moduli space of polystable G-Higgs bundles M(G) is the
set of isomorphism classes of polystable G-Higgs bundles (EHC, ϕ).

The topological type of the bundle EHC is an invariant of connected components of
M(G) so we refine our definition to identify components by the possible topological
types. The topological types can be identified by suitable characteristic classes such
as Chern classes (if HC = GL(n, C)) or Stiefel-Whitney classes (for O(n, C)-bundles).
If G is semisimple and connected the topological type of a principal HC-bundle on X
is classified by an element in π1(H

C) = π1(H) = π1(G). We will loosely denote the
characteristic class by c(EHC) and denote its value by c(EHC) = d. We can thus define;

Definition 2.7. The component Md(G) ⊂ M(G), called the moduli space of polystable
G-Higgs bundles of type d is the set of isomorphism classes of polystable G-Higgs
bundles (EHC, ϕ) such that c(EHC) = d.

Remark 2.8. When G is compact, the moduli space Md(G) coincides with Md(G
C), the

moduli space of polystable principal GC-bundles with topological invariant d.

The moduli space Md(G) has the structure of a complex analytic variety. This can
be seen by the standard slice method (see, e.g., Kobayashi [39, Ch. VII]). Geometric
Invariant Theory constructions are available in the literature for G real compact alge-
braic (Ramanathan [48, 49]) and for G complex reductive algebraic (Simpson [55, 56]).
The case of a real form of a complex reductive algebraic Lie group follows from the
general constructions of Schmitt [50]. We thus have the following.

Theorem 2.9. The moduli space Md(G) is a complex analytic variety, which is alge-

braic when G is algebraic.

The moduli spaces are not in general smooth but the singularities can be identified.
The singular points are associated with the G-Higgs bundles which are polystable but
not stable. This allows the moduli spaces to be smooth in special cases where polysta-
bility implies stability. For example in the case of G = GL(n, C) (as in Example 2.5) if
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the rank and degree of the underlying vector bundle are coprime then polystability is
equivalent to stability and hence the moduli spaces are smooth.

The moduli spaces can also be viewed as quotients in an infinite dimensional gauge-
theoretic setting. Fixing a smooth principal HC-bundle E with topological invariant
c(E) = d, the holomorphic principal HC-bundles with the same topological invariant
can be described by a choice of holomorphic structure on E . If E is a vector bundle
then holomorphic structures are defined by C-linear operators ∂̄E : Ω0(E) → Ω0,1(E)
that satisfy the Leibniz rule 2. This construction can be adapted for principal bundles,
and in all cases the space of holomorphic structures, denoted by A0,1(EHC), is an infinite
dimensional affine space locally modeled on the space of anti-holomoprhic 1-forms with
values in the endomorphism bundle, Ω0,1(EHC(hC)). Moreover a given holomorphic
structure induces an operator ∂̄E on Ω1,0(EHC(mC)) such that the condition for a 1-
form with values in EHC(mC) to be holomorphic is ∂̄Eϕ = 0.

Definition 2.10. The configuration space of G-Higgs bundles on E, i.e. the space
of all G-Higgs bundles for which the principal HC-bundle has topological invariant d, is
the space

Bd(G) = {(∂̄E , ϕ) ∈ A0,1(EHC) × Ω1,0(EHC(mC)) | ∂̄Eϕ = 0 } (2.3)

The complex gauge group for EHC , i.e. the group of sections GC = Ω0(Ad(EHC))), acts

on Bd(G) in such a way that GC-orbits correspond to isomorphism classes of G-Higgs
bundles. Thus

Md(G) = Bps
d (G)/GC (2.4)

where Bps
d (G) ⊂ Bd(G) denotes the set of polystable G-Higgs bundles.

The Hitchin-Kobayashi correspondence for Higgs bundles identifies polystability with
the existence of solutions to gauge theoretic equations, and thus yelds yet another
interpretation of the moduli spaces. There are two ways to formulate the equations.
In the first, one needs to fix a reduction of structure group on EHC to the compact
group H . If HC = GL(n, C) so H = U(n) then this corresponds to fixing a hermitian
bundle metric on the associated rank n vector bundle. We thus refer to this in all
cases as a choice of metric. The metric allows us to write EHC = EH ×H HC, where
EH is a principal H-bundle, and defines the real gauge group G ⊂ GC consisting of the
sections of Ω0(Ad(EH))). It provides, through the construction of Chern connections, an
identification between holomorphic structures on EHC and connections on EH . Denoting
the space of connections on EH by A(EH), we can thus formulate the following set of
equations for pairs (A, ϕ) ∈ A(EH) × Ω1,0(EHC(mC)):

FA − [ϕ, τ(ϕ)] = cω (2.5)

d0,1
A ϕ = 0 (2.6)

2 In general there is also an integrability condition but on Riemann surfaces this is automatically
satisfied (see [45] for the original theorem on complex manifolds, and [4] for the bundle case).
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Here FA is the curvature of the connection, τ denotes the compact conjugation on gC,
i.e. the anti-linear involution which defines the compact real form, c is an element in
the center of h, ω is the Kahler form on X, and dA is the antiholomorphic part of
the covariant derivative induced by A on EHC(mC)). The constant c is determined,
via Chern-Weil theory, by the topological invariant d. The operator d0,1

A defines the
holomorphic structure on EHC , so the second equation says that the Higgs field ϕ is
holomorphic.

Going back to the identification

A(EH) ≃ A0,1(EHC) (2.7)

determined by a choice of metric, we can regard the holomorphic structure and (holo-
morphic) Higgs field as given and view the equation (2.5) as an equation for a metric
on EHC . The Hitchin-Kobayashi correspondence then asserts:

Hitchin-Kobayashi Correspondence3 The G-Higgs bundle (EHC , ϕ) is polystable if

and only if EHC admits a metric satisfying the equation (2.5)

On the other hand, the equation (2.5) can be interpreted as a symplectic moment
map condition for the action of the gauge group G on the infinite dimensional space
A(EH) × Ω1,0(EHC(mC)). The symplectic form on this space is defined by the L2-inner
products constructed using the metric on EH together with the metric on X. The
resulting metric on B(d) is Kähler and hence defines a symplectic structure on the
smooth locus of the moduli space. The action of the real gauge group is hamiltonian
with respect to this symplectic structure and has a moment map

Ψ : A(EH) × Ω1,0(EHC(mC)) → Lie(G)∗ ∼= Ω2(ad(EH)) (2.8)

(A, ϕ) 7→ Λ(FA − [ϕ, τ(ϕ)]) − c (2.9)

where Λ denotes contraction against the Kähler form ω. If we define a subspace of
A(EH) × Ω1,0(EHC(mC)) by

BH
d (G) = {(A, ϕ) ∈ A(EH) × Ω1,0(EHC(mC)) | d0,1

A ϕ = 0 } (2.10)

and restrict the moment map to BH
d (G) we can thus describe the moduli space as a

symplectic quotient, i.e

Md(G) = Ψ−1(0)/G (2.11)

It is useful to make use of all three descriptions of the moduli spaces Md(G), namely

• as a space of isomorphism classes of polystable objects (Definition 2.7),
• as a complex quotient (see (2.4)), and

3The original correspondence of this sort goes back to a theorem of Narasimhan and Seshadri ([44])for
vector bundles over closed Riemann surfaces, while the versions for bundles over closed Kahler manifolds
go back to [40] ,[24], [60]. The scope of the result has by now been greatly extended to cover bundles
with various kinds of additional data and also more general base manifolds (see [41] for a summary).
For the versions most appropriate for G-Higgs bundles see [14], and[41].
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• as a symplectic quotient (see (2.11))

There is one further interpretation of the moduli spaces which relies on the fact
that while the Higgs field ϕ is a 1-form which takes its values in mC, the combination
θ = ϕ − τ(ϕ) takes its values in m. It follows that

D = dA + θ (2.12)

takes its values in g = h ⊕ m and defines a connection on the principal G-bundle

EG = EH ×H G ,

i.e. on the bundle obtained from EH by extending the structure group. The bundle EG

is thus, by construction, a G bundle with a reduction of structure group to H , i.e. with
a metric. We can reformulate equations (2.5) and (2.6) in terms of D and the metric
on EG. If we assume that G is semisimple and hence that the right hand side of (2.5)
is zero, then the equations become

FD = 0

d∗
Aθ = 0 . (2.13)

The first equation says that the connection D is flat and hence that its holonomy defines
a representation

ρ : π1(X) → G . (2.14)

Using the flat structure defined by D, the metric on EG is equivalent to a π1(X)-
equivariant map from the universal cover of X:

σ : X̃ → G/H . (2.15)

The second equation says that this map is harmonic with respect to the metric induced
on X̃ from that on X and the invariant metric on G/H . An important theorem of
Corlette asserts

Theorem 2.11. [18] The representation defined by (2.14) is reductive and all reductive

representations of π1(X) in G arise in this way, i.e. the corresponding flat G-bundles

admit harmonic metrics.

If X is a closed Riemann surface of genus g then Hom(π1(X), G), i.e. the set of
all surface group representations in G, forms a real analytic subspace of the 2g-fold
product G × · · · × G. The group G acts by conjugation on this space. The quotient
Hom(π1(X), G)/G does not in general have good geometric or even topological prop-
erties but restricting to the reductive representations yields a good moduli space of
representations

Rep(π1(X), G) = Hom+(π1(X), G)/G (2.16)
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(where the + denotes the restriction to the reductive representations). The topolog-
ical invariant d ∈ π1(G) which labels components of Md(G) also labels components
of Rep(π1(X), G), leading to the obvious definition for spaces Repd(π1(X), G). For
semisimple groups G, Corlette’s theorem together with the equivalence between equa-
tions (2.13) and the Higgs bundle equations (2.5) and (2.6) thus allows us to identify

Md(G) = Repd(π1(X), G) . (2.17)

This identification, especially when coupled with the Morse theoretic methods described
in the rest of this paper, turns Higgs bundles into an effective tool for studying the
moduli spaces of surface group representations.

2.3. Morse functions. There are two functions which turn out to be useful for explor-
ing the topology of the moduli spaces Md(G), i.e. which have good Morse-theoretic
properties. The first, defined on the infinite dimensional configuration space and de-
noted by

YMH : A(EH) × Ω1,0(EHC(mC)) → R , (2.18)

is a generalization of the Yang-Mills functional on the space of connections. The second,
defined on Md(G) itself and denoted by

f : Md(G) → R , (2.19)

was introduced by Hitchin and relies on the presence of the Higgs field. Both are related
to symplectic moment maps. In the next sections we explore these two functions from
the point of view of Morse theory.

3. The Yang-Mills-Higgs functional

The goal of this section is to describe recent developments on the infinite-dimensional
Morse theory of the Yang-Mills-Higgs functional. Firstly, we recall the work of Atiyah
& Bott on the Morse theory of the Yang-Mills functional for bundles over a compact
Riemann surface.

3.1. Background on the Yang-Mills functional and semistable holomorphic
bundles. In the late 1970s and early 1980s, Atiyah and Bott pioneered the use of the
Yang-Mills functional as an equivariant Morse function to study the topology of the
moduli space of semistable holomorphic bundles over a compact Riemann surface (see
[2] and [3]).

3.1.1. The algebraic picture. The setup is as follows. Fix a smooth complex vector
bundle E over a compact Riemann surface X. This corresponds to taking G = U(n)
in the terminology of Section 2.2. As described in Section 2.2, the space A0,1(E) of
holomorphic structures on E can be identified with an affine space locally modeled on
Ω0,1(End(E)), i.e.

A0,1(E) ∼= ∂̄A0 + Ω0,1(End(E))
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for a fixed operator ∂̄A0 .

Any holomorphic bundle has a canonical Harder-Narasimhan filtration

X × {0} = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E

by holomorphic sub-bundles, where, for each ℓ = 1, . . . , k, the quotient bundle Eℓ/Eℓ−1

is the maximal semistable sub-bundle of E/Eℓ−1. The type of the Harder-Narasimhan
filtration is the vector (ν1, . . . , νn), consisting of the slopes of the quotient bundles
Eℓ/Eℓ−1 in the Harder-Narasimhan filtration, counted with multiplicity rank(Eℓ/Eℓ−1).
Let A0,1

λ denote the set of holomorphic structures with Harder-Narasimhan type λ, and
let A0,1

ss denote the semistable holomorphic structures. There is a partial ordering on the
Harder-Narasimhan type (see [52]), and Atiyah and Bott show that the stratification

A0,1 = A0,1
ss ∪

⋃

λ

A0,1
λ

by type has the following properties.

(1) A0,1
λ ⊆

⋃

µ>λ

A0,1
µ .

(2) H∗
G

(

A0,1
µ

)

∼=

k
⊕

ℓ=1

H∗
Gℓ

(

A0,1
ss (Eℓ/Eℓ−1)

)

, where E1, . . . , Eℓ are the bundles in the

Harder-Narasimhan filtration, and Gℓ is the gauge group of Eℓ/Eℓ−1 for ℓ =
1, . . . , k.

(3) Each A0,1
λ is a manifold with constant codimension nλ, and there is an isomor-

phism

H∗
G

(

⋃

µ6λ

A0,1
µ ,
⋃

µ<λ

A0,1
µ

)

∼= H∗−nλ
G

(

A0,1
µ

)

.

(4) The stratification is equivariantly perfect in that, for each type λ, the long exact
sequence in G-equivariant cohomology

· · · → H∗
G

(

⋃

µ6λ

A0,1
µ ,
⋃

µ<λ

A0,1
µ

)

→ H∗
G

(

⋃

µ6λ

A0,1
µ

)

→ H∗
G

(

⋃

µ<λ

A0,1
µ

)

→ · · ·

splits into short exact sequences.

As a consequence of the above properties, one can (a) inductively compute the equi-
variant Poincaré polynomial of A0,1

ss in terms of the equivariant Poincaré polynomials
of all the lower rank spaces of semistable bundles, and (b) show that the inclusion
A0,1

ss →֒ A0,1 induces a surjective map

κ : H∗
G(A0,1) → H∗

G(A0,1
ss ).

This map is known as the Kirwan map. In [37], Kirwan shows that the strategy
described above applies in much more generality: it extends to compact symplectic
manifolds with a Hamiltonian action of a compact connected Lie group, and that one
can (a) inductively compute the Poincaré polynomial of the symplectic quotient, and
(b) show that the Kirwan map is surjective.
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3.1.2. Morse theory of the Yang-Mills functional. Now suppose that E also has a Her-
mitian structure. In the notation of Section 2.2 this means a reduction of structure
group from HC = GL(n, C) to H = U(n). For simplicity of notation, in this section we
omit the subscripts HC or H . Then there is an identification of A0,1(E) with the space
A(E) of connections compatible with this structure (note that in higher dimensions,
the integrability condition requires that we restrict attention to the subset of connec-
tions dA ∈ A(E) whose curvature FA satisfies FA ∈ Ω1,1(adE)). Therefore, there is an
induced stratification

A =
⋃

λ

Aλ (3.1)

by the Harder-Narasimhan type of the corresponding holomorphic structure. Even
though a change in the Hermitian metric will change the identification A0,1 ∼= A, for
a fixed connection dA ∈ A the Harder-Narasimhan type of the associated holomorphic
structure does not change when the metric changes. Therefore the stratification (3.1)
is well-defined independently of the choice of metric.

The Yang-Mills functional, YM : A → R, is defined by

YM(dA) = ‖FA‖
2 =

∫

X

|FA|
2 dvol,

and so we also have an induced functional YM : A0,1 → R, which depends on the
identification A0,1 ∼= A, and therefore on the choice of Hermitian metric.

The theorem of Narasimhan and Seshadri, i.e. the original Hitchin-Kobayashi corre-
spondence mentioned in Section 2.2, (see [44] for the original proof and [22] for Don-
aldson’s gauge-theoretic proof, which is more in the spirit of the Atiyah & Bott ap-
proach) shows that the space of polystable holomorphic structures are those that are
GC-equivalent to the minimum of YM. In fact, by considering the Yang-Mills flow,
more structure is apparent: it is a consequence of the work of Daskalopoulos in [19] and
R̊ade in [47] that the Yang-Mills flow defines a continuous G-equivariant deformation
retraction of Ass onto the minimum of YM and that the limit is determined by the
Seshadri filtration (see [39, Ch V, Thm 1.15]) of the initial condition.

This relationship between the algebraic geometry of the Harder-Narasimhan filtration
and the analysis of the Yang-Mills flow also has an analog for unstable bundles. Atiyah
and Bott show that the Yang-Mills functional achieves a minimum on each stratum Aλ,
and that this minimising set (call it Cλ) is precisely the set of critical points for YM that
are contained in Aλ. Moreover, the Morse index at each critical point is the same as the
codimension of the corresponding Harder-Narasimhan stratum. The results of [19] and
[47] then show that the Yang-Mills flow defines a G-equivariant deformation retraction
of Aλ onto Cλ and that the limit of the flow with initial condition dA0 is isomorphic to
the graded object of the Harder-Narasimhan-Seshadri double filtration of dA0 .

Therefore, the problem of studying the G-equivariant cohomology of the space of
semistable holomorphic structures is the same as that of studying the G-equivariant
cohomology of the minimum of YM, and the inductive formula in terms of the coho-
mology of the Harder-Narasimhan strata now has a Morse-theoretic analog in terms of
the equivariant cohomology of the critical sets for YM.
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It is worth mentioning here the relationship with Palais’s work. The analytic details
of the Morse theory for the Yang-Mills functional are slightly different than the cases
studied in [46]. In particular, since the critical sets are infinite-dimensional, then the
Palais-Smale condition C fails for the Yang-Mills functional. To recover an analog of
condition C, the solution is to instead look at the space of connections modulo the gauge
group. Using Uhlenbeck’s compactness theorem from [59], Daskalopoulos proves in [19,
Proposition 4.1] that condition C does hold for YM on A/G, and so one should think
of the Yang-Mills functional for a bundle over a compact Riemann surface as satisfying
a G-equivariant condition C on the space A.

A modified version of condition C is also valid in higher dimensions, where bubbling
needs to be taken into account. See for example [51] and [57, Proposition 4.5].

3.1.3. Higgs bundles. One would like to extend this picture to spaces of Higgs bundles.
We first discuss the case of G-Higgs bundles for G = GL(n, C).

Remark 3.1. When G = GL(n, C) we have mC = gl(n, C) (see Example 2.3) and so one
can consider the vector bundle E associated to the original principal bundle and think
of the space A0,1 of holomorphic structures as an affine space modeled on Ω0,1(End(E))
and the Higgs field as taking values in Ω0(End(E) ⊗ K). Therefore

EH = ad(E) and EHC(mC) = End(E).

Moreover, if we choose the compact real form to be u(n) ⊆ gl(n, C), then the involution
τ : gl(n, C) → gl(n, C) is given by τ(u) = −u∗.

Atiyah and Bott’s observation that the curvature FA is a moment map for the action
of G on the space A ∼= A0,1 also extends to the hyperkähler setting of Higgs bundles.
The cotangent bundle T ∗A0,1 ∼= A0,1 × Ω1,0(End(E)) has a hyperkähler structure, and
the action of the gauge group G has associated moment maps

µ1(∂̄E , ϕ) = FA + [ϕ, ϕ∗]

µC(∂̄E , ϕ) = µ2 + iµ3 = 2i∂̄Eϕ.

The hyperkähler moment map combines these three moment maps using the imagi-
nary quaternions

µhk(∂̄E , ϕ) = iµ1 + jµ2 + kµ3 ∈ Lie(G)∗ ⊗R R
3.

In analogy with the Yang-Mills functional (which is the norm-square of the moment
map), the full Yang-Mills-Higgs functional is defined to be the norm-square of the
hyperkähler moment map

YMH : A0,1 × Ω1,0(End(E)) → R

(∂̄E , ϕ) 7→ ‖µ1‖
2 + ‖µ2‖

2 + ‖µ3‖
2 = ‖FA + [ϕ, ϕ∗]‖2 + 4‖∂̄Eϕ‖2.

(3.2)

Remark 3.2. Recall from Remark 3.1 that A0,1×Ω1,0(End(E)) ∼= A(EH)×Ω1,0(EHC(mC),
and so the domain of YMH defined above is consistent with that given in (2.18). Also,
since the involution τ is given by τ(u) = −u∗, then we also have ‖FA + [ϕ, ϕ∗]‖2 =
‖FA − [ϕ, τ(ϕ)]‖2.
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The full Yang-Mills-Higgs functional can also be re-written in the following form
(compare with [8, Proposition 2.1] for the case where ϕ ∈ Ω0(E)).

Lemma 3.3.

YMH(∂̄A, ϕ) = ‖FA‖
2 + ‖[ϕ, ϕ∗]‖2 + 2‖∇Aϕ‖2 + 2 〈ϕ ◦ Ric, ϕ〉

− 2‖∂Aϕ‖2 − 2‖∂∗
Aϕ‖2 + 2‖∂̄Aϕ‖2. (3.3)

Proof. First we expand the Yang-Mills-Higgs functional as

YMH(∂̄A, ϕ) = ‖FA‖
2 + ‖[ϕ, ϕ∗]‖2 + 2ℜ 〈FA, [ϕ, ϕ∗]〉 + 4‖∂̄Aϕ‖2. (3.4)

Next, recall the Weitzenbock identity for a connection dA (with covariant derivative
denoted by ∇A) on a bundle F and a one-form η ∈ Ω1(F ). Let

RA(η)X :=
n
∑

j=1

[

RA(ej , X), η(ej)
]

,

where R denotes the Riemannian curvature tensor on the base manifold M with respect
to the Levi-Civita connection ∇, and let Ric denote the Ricci tensor of M . Then (see
[7, Theorem 3.1]) the Weitzenbock identity is

∆Aη = ∇∗
A∇Aη + η ◦ Ric +RA(η). (3.5)

The term coupling the curvature and the Higgs field in (3.4) can now be written as

2ℜ 〈FA, [ϕ, ϕ∗]〉 = −2
〈

RA(ϕ), ϕ
〉

= 2 〈∇∗
A∇Aϕ, ϕ〉 + 2 〈ϕ ◦ Ric, ϕ〉 − 2 〈∆Aϕ, ϕ〉

= 2‖∇Aϕ‖2 + 2 〈ϕ ◦ Ric, ϕ〉 − 2‖dAϕ‖2 − 2‖d∗
Aϕ‖2,

where in the second step we use the Weitzenbock identity (3.5). Since ϕ is a (1, 0)
form, then d∗

Aϕ = ∂∗
Aϕ. Decomposition by type means that we also have ‖dAϕ‖2 =

‖∂̄Aϕ‖2+‖∂Aϕ‖2. Subsitituting this into the formula for the Yang-Mills-Higgs functional
gives us

YMH(∂̄A, ϕ) = ‖FA‖
2 + ‖[ϕ, ϕ∗]‖2 + 2‖∇Aϕ‖2 + 2 〈ϕ ◦ Ric, ϕ〉

− 2‖∂Aϕ‖2 − 2‖∂∗
Aϕ‖2 + 2‖∂̄Aϕ‖2,

as required. �

Unfortunately, the full Yang-Mills-Higgs functional described above is not easy to
study from the perspective of Morse theory. For example, a complete classification of
the critical sets does not exist (although one can classify those satisfying ∂̄Aϕ = 0),
and currently there are no theorems on the long-time existence of the gradient flow
(again, the difficulties occur when ∂̄Aϕ 6= 0). From this perspective, it is simpler to
restrict to the space B(GL(n, C)) := {(∂̄E , ϕ) : ∂̄Eϕ = 0} of Higgs bundles, although
this introduces additional complications due to singularities in the space B(GL(n, C)).
Fortunately these complications can be dealt with for cases of low rank; this will be
explained later in the section.
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On restriction to the space of Higgs bundles, the Yang-Mills-Higgs functional takes
on the form

YMH : B(GL(n, C)) → R

(∂̄E , ϕ) 7→ ‖FA + [ϕ, ϕ∗]‖2.
(3.6)

Some of the theory from holomorphic bundles does carry over to GL(n, C)-Higgs
bundles. The Hitchin-Kobayashi correspondence shows that the polystable Higgs bun-
dles are precisely those that are GC-equivalent to a minimiser for the Yang-Mills-Higgs
functional. There is also an analogous Harder-Narasimhan filtration (defined using ϕ-
invariant holomorphic sub-bundles) and a corresponding algebraic stratification of the
space of Higgs bundles.

The space of Higgs bundles, i.e. B(GL(n, C)), may be singular, so a priori it is not
obvious how to extend the rest of the theory of Atiyah and Bott to study the topology
of the space of semistable Higgs bundles. More seriously, the negative eigenspace of
the Hessian does not have constant dimension on each connected component of the
set of critical points of YMH. As explained in the next few sections, it is possible to
get around these difficulties, and we have done this in [20], [61] and [62]. Some of the
constructions are general, however some have been done by hand for specific cases, so,
for now, we have restricted to certain low-rank situations.

The general strategy for extending the Atiyah and Bott theory to the space of Higgs
bundles (outlined in more detail in the next few sections) is as follows. Firstly, the
analog of the results of Daskalopoulos and R̊ade from [19] and [47] for the Yang-Mills
flow also holds for the Yang-Mills-Higgs functional. Secondly, for certain low-rank cases,
we are able to show that as the Yang-Mills-Higgs functional passes a critical value, then
the topology of the space changes by attaching a certain topological space determined by
the negative eigenspace of the Hessian at each critical point. Thirdly, we can compute
the change in cohomology as the Yang-Mills-Higgs functional passes a critical value,
and thus can compute the cohomology of the moduli space of Higgs bundles for certain
low-rank cases.

Finally, it is worth mentioning that the above strategy applies to a much broader
class of moduli spaces than just Higgs bundles. For example, the paper [61] uses this
method to produce new information about the space of rank 2 stable pairs.

3.2. Gradient Flow. This section describes the results on the convergence of the gra-
dient flow of the Yang-Mills-Higgs functional on the space of Higgs bundles.

Recall that there is already an algebraic stratification of the space of Higgs bundles.
Each Higgs bundle (∂̄A, ϕ) has a maximal semistable Higgs sub-bundle (a ϕ-invariant
holomorphic sub-bundle, whose holomorphic structure and Higgs field are induced from
(∂̄A, ϕ)), and from this one can construct a filtration of (∂̄A, ϕ) analogous to the Harder-
Narasimhan filtration for holomorphic bundles. The type ν of the filtration is the vector
consisting of the slopes of the quotient bundles counted with multiplicity, and there is
a stratification

B =
⋃

ν

Bν , (3.7)
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(where for simplicity we have dropped GL(n, C) from the notation). The main theorem
of [63] shows that the Yang-Mills-Higgs flow on B respects the Harder-Narasimhan
filtration in the following sense.

Theorem 3.4. The Yang-Mills-Higgs flow with any initial condition (∂̄A, ϕ) exists for

all time and converges in the smooth topology to a unique limit point, which is a critical

point of YMH. Moreover, this critical point is isomorphic to the graded object of the

Harder-Narasimhan-Seshadri double filtration of (∂̄A, ϕ).

Again, it is worth pointing out the connection with the Palais-Smale condition C. In
this context, not only are the critical sets infinite-dimensional, but, even after dividing
by the gauge group, they are non-compact. The necessary compactness ensured by con-
dition C can, however, be recovered by restricting to complex gauge orbits. This allows
one to prove an analog of the result in [19] for the Yang-Mills functional. Alternatively,
as in [63], one can show that the gradient flow converges by applying the Moser itera-
tion technique to obtain improved Sobolev estimates along the flow lines, from which
Uhlenbeck’s compactness theorem gives strong convergence in the appropriate norm.

Each Harder-Narasimhan stratum Bν contains a critical set (corresponding to the
minimum of YMH restricted to Bν), and the Harder-Narasimhan type ν is determined
by the value of FA + [ϕ, ϕ∗] on this critical set. The above theorem implies that there
is a Morse stratification

B =
⋃

ν

BMorse
ν (3.8)

where (∂̄A, ϕ) is in the Morse stratum BMorse
ν if and only if the limit of the flow with

initial conditions (∂̄A, ϕ) is in the critical set Cν defined earlier.

The methods of [63] also show that the gradient flow deformation retraction of each
Morse stratum onto the associated critical set is continuous. As a consequence, we see
that

Corollary 3.5. (1) Bν = BMorse
ν for all types ν, i.e. the Morse strata are the same

as the Harder-Narasimhan strata, and

(2) the flow defines a continuous G-equivariant deformation retraction of each stra-

tum Bν onto the corresponding critical set Cν .

The paper [5] extends Theorem 3.4 to G-Higgs bundles whose structure group is
any complex reductive group. The remainder of this section shows how to extend this
result further to the case where G is a real reductive group as in Section 2. As in
Sections 2.1 and 2.2, we fix a smooth principal HC bundle over X, denoted EHC , with
topological invariant d and let Bd(G) denote the space of Higgs G-bundles on EHC. Let
EGC = EHC ×HC GC be the bundle associate to EHC by the inclusion HC →֒ GC. This
induces an inclusion iG : Bd(G) →֒ Bd(G

C).

Given a reduction of structure group of EHC from HC to H , we can define the Yang-
Mills-Higgs functional on the space of Higgs G-bundles

YMHG(∂̄A, ϕ) = ‖FA − [ϕ, τ(ϕ)]‖2. (3.9)

where τ is the conjugation on gC that determines the compact Lie algebra h ⊂ g (as in
(2.5)).
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Lemma 3.6. The downwards gradient flow of YMHG on the space Bd(G) exists and is

unique.

Proof. First consider the following equation (cf. [53, Section 6] or [23, pp7-8]) on the
space of metrics for the bundle EHC .

∂h

∂t
= −2ih ∗

(

FA0 + ∂̄A0(h
−1(∂A0h)) + [ϕ0, h

−1τ(ϕ0)h]
)

+ 2iλh.

Simpson shows in [53, Section 6] that the solution exists and is unique. The same
method as in [63, Section 3.1] (see also [36]) shows that this implies existence of a curve
g : R>0 → GC

H that generates the gradient flow of YMHG in the sense that a solution
(∂̄A(t), ϕ(t)) satisfies

(∂̄A(t), ϕ(t)) = g(t) · (∂̄A0 , ϕ0).

Since GC

H ⊂ GGC preserves the space Bd(G), then this gives a unique integral curve
for the downwards gradient vector field of YMHG on the space Bd(G). �

Next we show that this integral curve coincides with that of the gradient flow of
YMHGC with initial conditions in B(G). Recall that the Cartan involution θ on g is
the restriction of the involution τ : gC → gC that determines the compact real form
h ⊕ im ⊂ gC. For the rest of this section we use τ to denote both the involution on gC

and its restriction to the Cartan involution on g.

Let B be the Killing form of g, and define

Bτ : g → g, Bτ (u, v) = −B(u, τ(v)).

Since τ is a Cartan involution then Bτ is positive definite on the real vector space g,
and therefore extends to a Hermitian inner product on gC. Note that the ad-invariance
of the Killing form implies that

Bτ ([u, v], w) = −B([u, v], τ(w)) = −B(u, [v, τ(w)])

= Bτ (u, τ [v, τ(w)]) = Bτ (u, [τ(v), w]). (3.10)

Using this inner product, we can construct the following inner products on the spaces
Ω2(ad(EG)) ∼= Lie(G)∗) and Ω0,1(ad(EGC)) ⊕ Ω1,0(ad(EGC)) ∼= T(∂̄A,ϕ)T

∗A0,1(EGC).

〈µ, ν〉 :=

∫

X

Bτ (µ, ∗ν)

〈(a1, ϕ1), (a2, ϕ2)〉 :=

∫

X

Bτ (a1, ∗a2) +

∫

X

Bτ (ϕ1, ∗ϕ2),

where (in local coordinates) Bτ acts on pairs of 1-forms by

Bτ (f1dz + g1dz̄, f2dz + g2dz̄) = −B(f1, τ(f2))dzdz̄ − B(g1, τ(g2))dz̄dz,

and on a pair consisting of a 2-form and a 0-form by

Bτ (fdzdz̄, g) = −B(f, τ(g))dzdz̄.



16 S. B. BRADLOW AND G. WILKIN

Note also that for ϕ1 = f1dz + g1dz̄ and ϕ2 = f2dz + g2dz̄ we have

〈[ϕ1, ϕ2], µ〉 =

∫

X

Bτ ([ϕ1, ϕ2], ∗µ)

= −

∫

X

B([ϕ1, ϕ2], τ(∗µ))

= −

∫

X

B(ϕ1, [ϕ2, τ(∗µ)])

= −

∫

X

B(ϕ1, τ [τ(ϕ2), ∗µ])

=

∫

X

Bτ (ϕ1, [τ(ϕ2), ∗µ])

= −〈ϕ1, ∗[τ(ϕ2), ∗µ]〉 .

The definitions above, together with the observation that τ restricts to the Cartan
involution on g, show that the functional YMHGC on BGC restricts to YMHG on BG.

Using the calculations above, we see that the derivative of YMHG at a point (∂̄A, ϕ) ∈
BG is given by

d YMHG(δa, δϕ) = 2ℜ 〈dA(δa) − [ϕ, τ(δϕ)] − [δϕ, τ(ϕ)], FA − [ϕ, τ(ϕ)]〉

= 2ℜ 〈δa, d∗
A(FA − [ϕ, τ(ϕ)]〉 + 2ℜ 〈δϕ, ∗[ϕ, ∗(FA − [ϕ, τ(ϕ)])]〉

+ 2ℜ 〈τ(δϕ), τ(∗[ϕ, ∗(FA − [ϕ, τ(ϕ)])])〉

= 4ℜ
〈

(δa)0,1,− ∗ ∂̄A ∗ (FA − [ϕ, τ(ϕ)])
〉

+ 4ℜ 〈δϕ, ∗[ϕ, ∗(FA − [ϕ, τ(ϕ)])]〉 ,

and so the gradient is

gradYMHG =
(

−i∂̄A ∗ (FA − [ϕ, τ(ϕ)]),−i[ϕ, ∗(FA − [ϕ, τ(ϕ)])]
)

,

which is the same as that of YMHGC at a point (∂̄A, ϕ) ∈ BG.

Therefore we have proven the following

Lemma 3.7. Let YMHG denote the Yang-Mills-Higgs functional on BG, and let YMHGC

denote the Yang-Mills-Higgs functional on BGC . Then

(1) YMHG is the restriction of YMHGC to iG(BG) ⊂ BGC , and

(2) at a G-Higgs bundle (∂̄A, ϕ) ∈ BG, the gradient of YMHG is equal to the gradient

of YMHGC .

Then the gradient flow line of YMHG with initial conditions (∂̄A0 , ϕ0) ∈ BG from
Lemma 3.6 is an integral curve of the gradient vector field YMHGC with initial conditions
(∂̄A0 , ϕ0). Since we have uniqueness for the gradient flow of both functionals, then the
gradient flow line of YMHG must coincide with the gradient flow line of YMHGC on the
space BG. The inclusion BG →֒ BGC is closed, and therefore the limit of the flow of
YMHGC is also contained in BG. In summary, we have shown that

Theorem 3.8. The gradient flow of YMHG is the restriction of the gradient flow of

YMHGC to the space of G-Higgs bundles. Moreover, the gradient flow of YMHG con-

verges to a critical point in BG.
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3.3. Cohomology calculations. First, recall the stratifications (3.7) and (3.8), which
are the same by Corollary 3.5. If we choose a total ordering compatible with the partial
ordering on Harder-Narasimhan type, then we can write this as

B =

∞
⋃

j=0

Bj , (3.11)

where B0 is the semistable stratum, and define

Xd =

d
⋃

j=0

Bj .

Then, since the total space B is contractible, the problem of computing the cohomology
of B0 = X0 reduces to understanding how the cohomology of Xd relates to that of Xd−1

for all d. Therefore, the goal is to compute H∗
G(Xd, Xd−1) and understand the map bk

in the long exact sequence

· · · → Hk
G(Xd, Xd−1)

ak

→ Hk
G(Xd)

bk

→ Hk
G(Xd−1) → · · · . (3.12)

The first step is to show that H∗
G(Xd, Xd−1) can be computed in terms of local data

in a neighbourhood of the critical set contained in Bd = Xd r Xd−1.

In addition, if the map ak is injective for all k on each stratum Bd, then the long
exact sequence (3.12) splits into short exact sequences, and (with coefficients in C) we
have

Hk
G(Xd) ∼= Hk

G(Xd−1) ⊕ Hk
G(Xd, Xd−1).

In the situations studied by Atiyah & Bott in [3] and Kirwan in [37], the Atiyah-Bott
lemma [3, Proposition 13.4] is the main tool in the proof that ak is injective. When
the ambient space is singular then the situation is more complicated; this is explained
below.

Recall that in the Morse-Kirwan case, the dimension of the negative eigenspace of
the Hessian is constant on each critical set, and the negative eigenspaces glue together
to form a bundle over the critical set, which we call the negative normal bundle. First
we define the analog of the negative normal bundle for Higgs bundles.

Given a smooth splitting E = E1 ⊕ · · · ⊕ En, where the sub-bundles are ordered by
decreasing slope, consider the following sub-bundle of End(E)

End(E)LT :=
⊕

i<j

E∗
i ⊗ Ej .

The critical point equations imply that the eigenvalues of ∗(FA+[ϕ, ϕ∗]) ∈ Ω0(End(E))
are locally constant and that the bundle E splits into ϕ-invariant sub-bundles corre-
sponding to the eigenspaces. Therefore, at each critical point there is a well-defined
subspace End(E)LT ⊂ End(E).

Consider the trivial bundle over the critical set ηd with fibres the vector spaces
Ω0,1(End(E)) ⊕ Ω1,0(End(E)), and let N denote the sub-bundle whose fibres are the
subspaces Ω0,1(End(E)LT )⊕Ω1,0(End(E)LT ). Note that N is trivial over any subset of
critical points that induce the same smooth splitting of E. We define the fibres of the
negative normal bundle over a critical point (∂̄A, ϕ) to consist of those elements in the
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fibres of N that are (a) orthogonal to the GC orbit passing through (∂̄A, ϕ), and (b)
contained in the space of Higgs bundles. More precisely, define the infinitesimal action
of GC through (∂̄A, ϕ) by

ρC

(∂̄A ,ϕ) : Ω0(End(E)) → Ω0,1(End(E)) ⊕ Ω1,0(End(E))

u 7→ (∂̄Au, [ϕ, u]),

and note that since (∂̄A, ϕ) is split at a critical point, then ρC

(∂̄A ,ϕ)
restricts to a map

Ω0(End(E)LT ) → Ω0,1(End(E)LT ) ⊕ Ω1,0(End(E)LT ). The negative normal bundle is

ν−
d :=

{

(∂̄A, ϕ, δa, δϕ) ∈ N : (ρC

(∂̄A,ϕ))
∗(δa, δϕ) = 0, ∂̄(A+a)(ϕ + δϕ) = 0

}

.

Remark 3.9. The term “negative normal bundle” is intended intuitively rather than
literally, since ν−

d is the analog of the negative normal bundle for a Morse-Kirwan
function on a smooth space. When the ambient space is singular then ν−

d as defined
above may not be a bundle. As we will see below in Example 3.11, the fibres may not
always be vector spaces, and even if the fibres are vector spaces then they may jump in
dimension.

We also define the associated space

ν ′
d :=

{

(∂̄A, ϕ, δa, δϕ) ∈ ν−
d : (δa, δϕ) 6= 0

}

.

The following theorem from [20], [61] and [62] shows that H∗
G(Xd, Xd−1) can be com-

puted in terms of the local data of the negative normal bundle. The analogous theorem
for non-degenerate Morse theory is contained in [42, Chapter 3] and [46, Section 12], for
Morse-Bott theory it was proven by Bott in [6, p250], and for Morse-Kirwan functions
it was proven by Kirwan in [37, Chapter 10].

Theorem 3.10. For the cases of rank 2 Higgs bundles, U(2, 1) Higgs bundles and rank

2 stable pairs, we have

H∗
G(Xd, Xd−1) ∼= H∗

G(ν−
d , ν ′

d).

As noted earlier, even if the fibres of ν−
d are vector spaces, their dimension may

be non-constant on each connected component of the critical set of YMH, and so the
problem of computing H∗

G(ν−
d , ν ′

d) is more complicated than the methods of Atiyah &
Bott and Kirwan from [3] and [37]. The following example illustrates how the fibres
may jump in dimension.

Example 3.11. Let E be a rank 2 bundle of degree d, and consider the critical points
of YMH where E splits into line bundles L1 ⊕ L2, with deg L1 = ℓ. This forms a
connected component of the set of critical points, denoted ηℓ. Modulo the action of
the unitary gauge group we can fix a smooth splitting E = L1 ⊕ L2 (cf. [3, Section 7]
and [63, Corollary 4.17]), and with respect to this splitting End(E)LT = L∗

1L2. Then,
for (δa, δϕ) ∈ Ω0,1(End(E)LT )⊕Ω1,0(End(E)LT ), the conditions (δa, δϕ) ∈ ker(ρC

(∂̄A,ϕ)
)∗

and ∂̄A+a(ϕ + δϕ) = 0 become

∂̄∗
A(δa) − ∗̄[ϕ, ∗̄(δϕ)] = 0, ∂̄A(δϕ) + [δa, ϕ] = 0.

Note that [δa, δϕ] = 0, since End(E)LT = L∗
1L2. Therefore the above equations are

linear in (δa, δϕ), and so the space of solutions is a vector space.
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When ϕ = 0, the equations reduce to

∂̄∗
A(δa) = 0, ∂̄A(δϕ) = 0,

and so the space of solutions is isomorphic to H0,1(L∗
1L2) ⊕ H1,0(L∗

1L2). By Riemann-
Roch, the dimension is

2ℓ − deg(E) + g − 1 + h0(L∗
1L2 ⊗ K).

When 0 6 deg(L∗
1L2 ⊗ K) 6 2g − 2 then h0(L∗

1L2 ⊗ K) is not constant with respect to
the holomorphic structure on L∗

1L2 ⊗K. Therefore the dimension of the fibres of ν−
d is

non-constant.

When the Higgs field is non-zero, there is an analogous picture obtained by replacing
the cohomology groups H0,1(L∗

1L2)⊕H1,0(L∗
1L2) with the harmonic forms associated to

the middle term in the following deformation complex

Ω0(L∗
1L2)

ρC

(∂̄A,ϕ)

−→ Ω0,1(L∗
1L2) ⊕ Ω1,0(L∗

1L2)
dµC−→ Ω1,1(L∗

1L2).

As noted above, for rank 2 we always have [δa, δϕ] = 0 for (δa, δϕ) ∈ Ω0,1(End(E)LT )⊕
Ω1,0(End(E)LT ), and so it is sufficient to study the linearised equations. For higher rank,
one needs to replace the linearisation of the complex moment map dµC with the map
(δa, δϕ) 7→ ∂̄A+δa(ϕ + δϕ). In the more complicated cases studied in [61] and [62] this
becomes a consideration.

Nevertheless, it is still possible to compute H∗
G(ν−

d , ν ′
d) in this case (and for other low-

rank cases). The observation that allows us to do this is that the jumps in dimension
described above are related to the jumps in dimension of the fibres of the Abel-Jacobi
map SdX → Jacd(X).

The strategy of the calculation from [20] is as follows. First, find a G-equivariant
deformation retract of the pair (ν−

d , ν ′
d) to the subspace with Higgs field zero. Next,

introduce the space

ν ′′
d =

{

(∂̄A, ϕ, δa, δϕ) ∈ ν−
d : ϕ = 0, δa 6= 0

}

⊆ ν ′
d.

In [20], we compute

H∗
G(ν−

d , ν ′′
d ) ∼= H∗−2ℓ+deg(E)−(g−1)(Jac(X) × Jac(X)) ⊗ H∗(BU(1))⊗2

H∗
G(ν ′

d, ν
′′
d ) ∼= H∗−2ℓ+deg(E)−(g−1)(S2g−2+deg(E)−2ℓ1X × Jac(X)) ⊗ H∗(BU(1)).

Without repeating the details of these calculations, it is still worth noting that both
isomorphisms follow from reducing to the Thom isomorphism. In the first case this is
straightforward, and in the second case this follows by reducing to a vector bundle over
a subset of the negative normal directions.



20 S. B. BRADLOW AND G. WILKIN

These computations tell us about the long exact sequence (3.12) via the following
commutative diagram.

...

��

· · · // Hk
G(Xd, Xd−1) //

∼=
��

Hk
G(Xd) //

��

Hk
G(Xd−1) //

��

· · ·

· · · // Hk
G(νd, ν

′
d)

//

��

Hk
G(νd) // Hk

G(ν ′
d)

// · · ·

Hk
G(νd, ν

′′
d )

ξk
77

p
p

p
p

p
p

p
p

p
p

p

γk

��

Hk
G(ν ′

d, ν
′′
d )

��
...

(3.13)

Lemma 3.12. For non-fixed determinant rank 2 Higgs bundles, the map γk is surjective

for all k, and so the vertical long exact sequence splits into short exact sequences.

The Atiyah-Bott lemma shows that the diagonal map ξk is injective, and so a diagram
chase leads to

Corollary 3.13. (1) The map bk : Hk
G(Xd) → Hk

G(Xd−1) is surjective, and

(2) P G
t (Xd) − P G

t (Xd−1) = P G
t (νd, ν

′′
d ) − P G

t (ν ′
d, ν

′′
d ) .

The calculations for other examples such as stable pairs and U(2, 1) Higgs bundles
follow a similar strategy: the idea is to further decompose the negative normal bundle
and then compute the cohomology of the pair (Xd, Xd−1) in terms of on the smaller
pieces in the decomposition. See [61] and [62] for more details.

In the fixed determinant case the situation is not quite as simple. The analogous map
γk is not always surjective, and so the vertical long exact sequence in (3.13) does not
split. As a consequence, a diagram chase of (3.13) only gives us

P G
t (νd) − P G

t (ν ′
d) = P G

t (νd, ν
′′
d ) − P G

t (ν ′
d, ν

′′
d ),

however we can still recover the second part of Corollary 3.13 in two different ways.

The first is to avoid using the negative normal bundle in the diagram (3.13), and
instead do all of the calculations in terms of the spaces Xd. This is more in the spirit
of the original Atiyah and Bott approach. The intermediate space is denoted X ′′

d (see
[20, Section 3.1] for the precise definition), and there are isomorphisms

H∗
G(Xd, X

′′
d ) ∼= H∗

G(νd, ν
′′
d ), H∗

G(Xd−1, X
′′
d ) ∼= H∗

G(ν ′
d, ν

′′
d ).
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The diagram becomes

...

��

· · · // Hk
G(Xd, Xd−1) //

∼=
��

Hk
G(Xd) // Hk

G(Xd−1) // · · ·

Hk
G(Xd, X

′′
d )

ξk
77

p
p

p
p

p
p

p
p

p
p

p

γk

��

Hk
G(Xd−1, X

′′
d )

��
...

(3.14)

Again, the diagonal map ξk is injective. An analogous diagram chase to the one above
gives us P G

t (Xd) − P G
t (Xd−1) = P G

t (Xd, X
′′
d ) − P G

t (Xd−1, X
′′
d ), even though the vertical

long exact sequence in (3.14) does not split.

The second approach is to use the action of the finite group Γ2 := H1(X, Z/2Z)
corresponding to the 2-torsion points on the Jacobian, which was originally defined by
Hitchin in [34, Section 7]. This acts on the cohomology groups in the diagram (3.13),
and the representation splits into pieces according to whether the action is trivial or
not. In [20, Section 4.2], we show that the maps in the diagram (3.13) respect this
splitting, and that we can recover the result

P G
t (Xd) − P G

t (Xd−1) = P G
t (νd, ν

′′
d ) − P G

t (ν ′
d, ν

′′
d ).

As an additional consequence of this method, we also prove

Theorem 3.14 (Theorem 4.13 of [20]). The Γ2-invariant Kirwan map surjects onto

the Γ2-invariant part of the cohomology of Bss
0 (2, d) for any d.

4. The Hitchin function

We now examine the function mentioned in (2.19). Fix a smooth principal H-bundle,
EH , with topological invariant d and use the description of Md(G) in which points are
represented by gauge orbits of points (A, ϕ) ∈ A×Ω1,0(EH(mC)). The function is then

f :Md(G) → R

[A, ϕ] 7→ ||ϕ||2L2, (4.1)

where the L2-norm of the Higgs field is computed using the (fixed) metric determined by
the Ad-invariant bilinear form on G and the metric on X. If we regard points in Md(G)
as isomorphism classes of holomorphic pairs (EHC, ϕ) or, equivalently, as complex gauge
orbits in A0,1(EHC) × Ω1,0(EH(mC), then the function is defined by
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f([EHC, ϕ]) = ||g(ϕ)||2, (4.2)

where g ∈ GC is the element (unique up to real gauge transformations) such that
g(EHC, ϕ) lies in the the zero set of the moment map Ψ.

Theorem 4.1. The map

S1 ×Md(G) → Md(G)

eiθ[E, ϕ] = [E, eiθϕ] (4.3)

defines an action which is Hamiltonian on the smooth locus and for which the above

function f is the moment map.

It follows immediately by a theorem of Frankel for S1-actions on Kähler manifolds
([25])that:

Theorem 4.2. The critical points of f are given by the fixed points of the S1 action.

Moreover, f is a perfect non-degenerate Morse-Bott function on the smooth locus of

Md(G).

Furthermore, if M is any such Kähler manifold with an S1-action and p ∈ M is a smooth
critical point of the moment map, then there are two linear maps on the tangent space
TpM , namely

(1) the Hessian of the moment map, Hf , and
(2) the infinitesimal S1-action, HS

and these are related by

Hf = −iHS. (4.4)

It follows from (4.4) that

Proposition 4.3. At a critical point p ∈ M for the S1-moment map f , the decomposi-

tion of TpM into eigenspaces for Hf coincides with the weight-space decomposition for

the S1-action and that the λ-eigenspace for Hf is the −iλ-weight space for the S1-action.

In cases where Md(G) is smooth, it follows that the Poincare polynomial is given by

Pt(Md(G)) = ΣN tλN Pt(N) (4.5)

where the sum is over the critical submanifolds of f and λN is the index of critical
submanifold N , however in order to use formula (4.5) one has to

• identify the fixed points of the S1-action and hence the critical submanifolds N ,
• compute the Morse indices λN , and
• compute the Poincare polynomials Pt(N).

In Section 4.3 we discuss some cases where all these steps can be carried out. Even
in cases where this is not possible, either because the moduli space is not smooth or
because the requisite properties for the critical submanifolds are not known, the Hitchin
function f retains the following useful features (first shown by Hitchin in [34]).
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Theorem 4.4. The function f : Md(G) → R defined as in (4.1) is a proper map and

hence attains a minimum on each connected component.

Proof. (sketch) Recall that points in Md(G) are represented by pairs (A, ϕ) ∈ A ×
Ω1,0(EH(mC) which satisfy equations (2.5) and (2.6). Applying a Weitzenbock formula
using the connection A and the metric on X thus leads to the estimate

0 6 ||d1,0
A ϕ||2L2 = − < FA , [ϕ, τ(ϕ)] > +(2g − 2)||ϕ||2L2 (4.6)

= −||[ϕ, τ(ϕ)]||2L2 + (2g − 2)||ϕ||2L2. (4.7)

where d1,0
A denotes the holomorphic part of the covariant derivative and the pairing

< , > uses the Ad-invariant bilinear form on g and the inner product on forms of type
(1, 1).

Thus

||FA||
2
L2 = ||[ϕ, τ(ϕ)]||2L2 6 (2g − 2)f([A, ϕ]) (4.8)

Since the connections are on a bundle over a compact Riemann surface, the result now
follows from a compactness result by Uhlenbeck ([59]) for connections with L2-bounds
on curvature. �

In order to count the connected components of Md(G) it is thus enough to

• identify the fixed points of the S1-action and hence the critical submanifolds N ,
• show that each minimal submanifold N is connected

In Section 4.4 we discuss some cases where these steps can be carried out.

4.1. Critical points. Denote the infinitesimal generator of the S1-action (4.3) by the
vector field X on Md(G). Since f is a moment map with respect to the symplectic
form defined by a Kähler metric, we have for any other vector field Y

df(Y ) = −k(Y, JX) (4.9)

where J denotes the involution which defines the complex structure and the pairing k
denotes the Kähler metric. In particular, a point [A, ϕ] ∈ Md(G) is a critical point of
f if and only if X[A,ϕ] = 0, i.e.

d

dt
[A, eitϕ]|t=0 = 0 (4.10)

There are two types of critical points that can occur:

Type 1: [ϕ = 0] Clearly any points at which ϕ = 0 are fixed points of the S1-action
and hence critical points of f . Moreover, since f = 0 at these points, they are in fact
global minima.

Type 2: [ϕ 6= 0] Minima with ϕ 6= 0 can occur because the points in Md(G)
are isomorphism classes of Higgs bundles or, equivalently gauge orbits of pairs in the
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configuration space. The condition for a point represented by the Higgs bundle (A, ϕ)
to be a fixed point is that there is a 1-parameter family of gauge transformations, say
gθ, such that

(A, eiθϕ) = gθ(A, ϕ) (4.11)

for all θ. Let Ψ be the infinitesmal action of gθ, i.e. (dA(Ψ), [Ψ, ϕ]) = d
dθ

∣

∣

θ=0
gθ(A, ϕ).

Then (4.11) implies

dA(Ψ) = 0,

[Ψ, ϕ] = iϕ .
(4.12)

Example 4.5. If G = GL(n, C) and we use the standard representation to replace EHC

by a rank n vector bundle V then the first condition in (4.12) implies that Ψ decomposes
V into a direct sum of eigenbundles, say

V =
⊕

λ

Vλ , (4.13)

where the eigenvalue on Vλ is iλ. The second condition then says that

ϕ : Vλ → Vλ+1 ⊗ K (4.14)

In other words, the Higgs bundle (V, ϕ) defines a variation of Hodge structure (as
defined, for example, in [54]).

In general, the infinitesimal gauge transformation Ψ defines eigenbundle decomposi-
tions

EH(hC) =
⊕

µ

(EH(hC))µ (4.15)

EH(mC) =
⊕

ν

(EH(mC))ν (4.16)

where the eigenvalues on the summands are iµ and iν respectively. The second condition
in (4.12) implies that

ad(ϕ) : (EH(hC))µ → (EH(mC))µ+1 ⊗ K (4.17)

ad(ϕ) : (EH(mC))ν → (EH(hC))ν+1 ⊗ K (4.18)

where the maps are defined by the adjoint action. In cases where there is a ‘natural’
or ‘standard’ representation of HC so that EHC can be replaced by one or more vec-
tor bundles, the fixed points of the S1-action have a Hodge bundle structure and the
eigenbundles of EH(hC) and EH(mC) can be described in terms of the Hodge bundle
summands.
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Example 4.6. For G = GL(n, C) where, as in Example 4.5, we can describe the Higgs
bundles as pairs (V, ϕ) in which V is a rank n vector bundle, the Hodge bundles are as
in (4.13) and (4.17). In this case hC = mC = gl(n, C) and EH(hC) = EH(mC) = End(V ).
The eigenbundles in the decomposition of End(V ) are given by

End(V )λ =
⊕

λ=ν−µ

Hom(Vµ, Vν) (4.19)

i.e. the eigenvalues are of the form µ − ν where µ, ν are eigenvalues in the Hodge
decomposition of V .

Example 4.7. 4For G = Sp(2n, R) we have, as in Table 1, H = U(n), so EHC is a
principal GL(n, C)-bundle. If we let V be the rank n vector bundle given by the standard
representation, then

EH(hC) = End(V )

EH(mC) = Sym2(V ) ⊕ Sym2(V ∗) (4.20)

so, as in Table 2, we can describe Sp(2n, R)-Higgs bundles as triples (V, β, γ) where

β ∈ H0(Sym2(V ) ⊗ K) and γ ∈ H0(Sym2(V ∗) ⊗ K) . (4.21)

At the fixed points of the S1-action the infinitesimal generator of the gauge transfor-
mation, i.e. the Ψ in (4.12), yields an eigenbundle decomposition as in (4.13) but the
effect of the second condition in (4.12) is not the same as in (4.14). For Sp(2n, R)-Higgs
bundles the condition is equivalent to the conditions

Ψβ − βΨ∗ = iβ (4.22)

Ψ∗γ − γΨ = iγ (4.23)

and hence we get that

β : V ∗
λ → Vλ+1 ⊗ K and γ : Vλ → V ∗

−λ−1 ⊗ K (4.24)

where V =
⊕

λ Vλ is the eigenbundle decomposition of V . Thus:

Definition 4.8. The Hodge bundles corresponding to the S1-fixed points on the Sp(2n, R)-
Higgs bundle moduli spaces are of the form (V, β, γ) with V =

⊕

λ Vλ and β, γ satisfying
(4.24).

It follows from (4.20) that the eigenbundle decompositions for EH(hC) and EH(mC) are
given by

4See [26] for details



26 S. B. BRADLOW AND G. WILKIN

End(V )λ =
⊕

λ=µ−ν

Hom(Vµ, Vν) (4.25)

Sym2(V )λ+1 =
⊕

µ+ν=λ+1

Vµ ⊗ Vν ⊕ Sym2(Vλ+1
2

) (4.26)

Sym2(V ∗)λ+1 =
⊕

−µ−ν=λ+1

V ∗
µ ⊗ V ∗

ν ⊕ Sym2(V ∗
λ+1

2

) (4.27)

4.2. Morse indices and a criterion for the minima. Having identified the critical
points of the function f , the next step in the Morse theory program requires computation
of Morse indices, and this in turn requires an understanding of the tangent spaces to
the Higgs bundle moduli spaces. The main ideas go back to Hitchin’s papers (see [35]):

The space of infinitesimal deformations of a G-Higgs bundle (EH , ϕ) can be identified
as the first hypercohomology of a deformation complex

C•(EH , ϕ) : EH(hC)
ad(ϕ)
−→ EH(mC) ⊗ K (4.28)

If (EH , ϕ) represents a smooth point in the moduli space then the first hypercohomology
of the deformation complex is canonically isomorphic to the tangent space at the point,
i.e.

H
1(C•(EH , ϕ)) ≃ T[EH ,ϕ]Md(G) . (4.29)

The decompositions (4.15), together with (4.17), decompose the deformation complex
as

C•(EH , ϕ) =
⊕

µ

C•(EH , ϕ)µ (4.30)

where

C•(EH , ϕ)µ : EH(hC)µ
ad(ϕ)
−→ EH(mC)µ+1 ⊗ K (4.31)

At smooth critical points of f the hypercohomology group H1(C•(EH , ϕ)µ) is isomorphic
to the −µ eigenspace for the Hessian Hf .

The above results allow Morse indices to be calculated and in particular yield the
following criterion for a smooth critical point to be a minimum (see [35]):

Proposition 4.9. Let (EHC , ϕ) represent a fixed point of the S1-action on the smooth

locus of a moduli space of polystable G-Higgs bundles Md(G). Then the point is a local

minimum if and only if

H
1(C•(EH , ϕ)µ) = 0 ∀ k > 0 . (4.32)

In practice, i.e. when working out the details for specific examples, the vanishing of
H

1(C•(EH , ϕ)µ) is determined using a criterion first formulated in [35], namely
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Proposition 4.10. Under the same assumptions as in Proposition 4.9, the hypercoho-

molgy H1(C•(EH , ϕ)µ) vanishes if and only if

ad(ϕ) : (EH(hC))µ → (EH(mC))µ+1 ⊗ K (4.33)

is an isomorphism.

In cases where the moduli space Md(G) has singularities, it can happen that fixed
points of the S1-action of the function f lie in the singular locus. To determine whether
the resulting Hodge bundles are local minima for the function f , one must construct
families of deformations by hand and examine the behavior of the function along the
deformations. In Section 4.4 we illustrate these ideas with some specific examples.

4.3. Best-case scenarios. In this section we discuss some situations in which the full
Morse theory program can be carried out using the Hitchin function f .

As noted in Section 2.2, for G = GL(n, C), the moduli spaces Md(G) are sometimes
smooth. The GL(n, C)-Higgs bundles can be represented by pairs (V, ϕ) where V is a
rank n holomorphic bundle, the Higgs field ϕ : V → V ⊗K, and the topological class d
is the degree of V . In order for such Higgs bundles to be polystable but not stable, the
bundle V has to split as a direct sum of lower rank vector bundles with the same slope
as V . This cannot happen if the rank and degree of V are coprime, i.e. (n, d) = 1. In
[34] Hitchin analyzed the case of n = 2 and odd degree and in [32] Gothen examined
the rank three case.

Fix d such that (3, d) = 1 and let Md denote the moduli space of stable GL(3, C)-
Higgs bundles for which the underlying bundle has degree d. Let f : Md → R be the
Hitchin function as defined in (4.1). The critical points of f , or equivalently the fixed
points of the S1-action, can be of either type discussed in Section 4.1.

The critical points with ϕ = 0 are zeros of the non-negative function f and hence
clearly global minima. Moreover, if N0 denotes the locus of such minima, then we can
identify

N0 ≃ M(3, d) (4.34)

where M(3, d) denotes the moduli space of stable bundles of rank 3 and degree d. The
Morse index of N0 is zero (since the critical points are global minima) and the Poincare
polynomial for M(3, d) is known by the work of Desale and Ramanan ([21]). We can
thus compute the contribution of N0 to the Poincare polynomial of Md.

The critical points with ϕ 6= 0 are described as follows. As explained in Example 4.5
the corresponding fixed points of the S1-action are represented by Hodge bundles, say
(V, ϕ). Since n = 3, the possibilities are limited to the three types in Table 3. The
possibilities within this set of types are constrained by the topological type of V , i.e.

deg(L) + deg(Vi) = deg(L1) + deg(L2) + deg(L3) = d . (4.35)

Moreover, the Hodge bundles must represent points in the moduli space Md. They
must thus represent stable Higgs bundles or, equivalently, must support solutions to
the Higgs bundle equation (2.5). This puts further constraints on the degrees of the
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type V ranks ϕ

(1, 2) L ⊕ V2 rank(L) = 1, rank(V2) = 2

(

0 0
ϕ 0

)

(2, 1) V1 ⊕ L rank(V1) = 2, rank(L) = 1

(

0 0
ϕ 0

)

(1, 1, 1) L1 ⊕ L2 ⊕ L3 rank(Li) = 1





0 0 0
ϕ1 0 0
0 ϕ2 0





Table 3. Hodge bundles defining critical points of the S1-action on the mod-
uli space of SL(3, C)-Higgs bundles

summands. For example (see [32]) for the Hodge bundles of type (1, 2) the constraint
is that

3d < deg(L) <
1

3
d + g − 1. (4.36)

Having identified the forms of all possible critical points, what remains is to

(1) describe the critical submanifolds and compute their Poincare polynomials, and
(2) compute the Morse indices for each of the critical submanifolds

Remark 4.11. This is the place where the cases n > 3 become much more difficult than
the cases n = 2 and n = 3. In particular, the main obstacle to progress is the description
of the critical submanifolds and the computation of their Poincare polynomials.

We describe briefly how Gothen completed the Morse theory program in the case n = 3,
giving only enough details to highlight some of the geometry. For full details we refer
the reader to [32]. The main idea is that the critical submanifolds can be identified
as moduli spaces in their own right and for which the Poincare polynomials can be
computed.

Consider the Hodge bundles of type (1, 2). The component ϕ in the Higgs field is a
holomorphic map

ϕ : L → V K (4.37)

or, equivalently, an element of the space of holomorphic sections H0(V L−1K). Denoting
deg L by l, we see that these Hodge bundles are determined by pairs (V, ϕ) where V
is a rank three bundle of degree d − l − (2g − 2) and ϕ ∈ H0(V). Just as for Higgs
bundles, moduli spaces for pairs of this sort may be constructed if one introduces a
suitable notion of stability. The appropriate definition depends on a real parameter
(see [9]) and the resulting moduli spaces are non-empty provided the parameter lies in
a bounded range determined by the rank and degree of the bundle. For rank 2 bundles
the stability of a pair (V, ϕ) can be formulated as a condition on line subbundles L ⊂ V,
namely
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deg(L) <

{

v
2
− σ if Φ ∈ H0(L)

v
2

+ σ otherwise
(4.38)

where v = deg(V) and σ is a real parameter. If the inequalities are allowed to be
equalities then the pair is σ-semistable. The allowed range for σ is

0 6 σ 6
v

2
. (4.39)

This range is partitioned at the values of σ for which v
2
±σ is integral5. Except for values

of σ at these partition points, the moduli spaces of σ-stable pairs, say Nσ(2, v), are
smooth projective varieties. In fact the moduli spaces depend only on the subinterval
containing σ, so there is a discrete family of distinct moduli spaces labelled by the
subintervals (v

2
− i − 1, v

2
− i) (for i = 0, 1, . . . imax).

It is not hard to show (see [32]) that the Hodge bundle (L ⊕ V, ϕ) is stable if and
only if the corresponding pair (V, ϕ) is σ-stable for a specific value of σ, namely

σ = −
d

6
+

l

2
(4.40)

We thus get a precise relationship between the critical points of type (1, 2) and a moduli
space of σ-stable pairs induced by the map

(L ⊕ V, ϕ) 7→ (V L−1K, ϕ) (4.41)

It remains to determine the Poincare polynomial for the moduli space Nσ(2, v) where
v = d − l + 2g − 2 and σ is given by (4.40). This can be done by adapting the work
of Thaddeus ([58]). The moduli space corresponding to the largest subinterval in the
range for σ is the easiest to describe and the others can be related to it by ‘flips’, i.e.
explicit transformations whose effect on the Poincare polynomial can be computed.

The Hodge bundles of type (2, 1) can be analysed in essentially the same way, while
those of type (1, 1, 1) can be described as finite coverings of products of Jacobian vari-
eties. The Morse indices at each of the critical points are calculated using their relation
to the weight spaces for the S1 action (see Proposition 4.3).

Putting everything together, Gothen computes the full Poincare polynomial for Md

for any d coprime to 3 (see [32], Theorem 1.2).

Remark 4.12. For GL(n, C)-Higgs bundles with n > 3, if the degree of the bundle is
coprime to n then the moduli space Md(GL(n, C)) is smooth, the Morse indices for the
critical submanifolds of the Hitchin function can be computed, and the submanifolds
can be described as moduli spaces in their own right. The correspond to moduli spaces
of quiver bundles where the quivers describe the structure of the possible Hodge bundles
that occur at fixed points of the S1-action. Unfortunately, the Poincare polynomials of
these spaces are not known.

5Thus at integer or half-integer values, depending on whether deg V is even or odd
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4.4. Good enough for π0. The success of the full Morse theory program for moduli
spaces of GL(3, C)-Higgs bundles depends on the smoothness of the moduli spaces and
the fact that the critical submanifolds can be described and have computable Poincare
polynomials. In this section we discuss examples of G-Higgs bundles that fall short of
these requirements but in which we can at least compute the first topological invariant,
namely the number of connected components. In these cases G is a non-compact real
reductive group, so the G-Higgs bundles are as described in Section 2. Many specific
examples have been examined (see [1],[10],[11],[26],[28],[29],[31],[34, 35])

We discuss just one case, namely G = Sp(2n, R). We pick this illustrative example
because Sp(2n, R) is both a split real form and also has the property that the associated
homegeneous space G/H is a Hermitian symmetric space. Moreover, since Sp(2n, R)
is semisimple, we can invoke the identification of (2.17) to identify the Higgs bundle
moduli spaces with moduli spaces of surface group representations in Sp(2n, R).

For G = Sp(2n, R) we have seen in Example 4.7 that an Sp(2n, R)-Higgs bundle on
X consists of a triple (V, β, γ) where V is a rank n holomorphic bundle on X and the
components of the Higgs field are symmetric maps

β : V ∗ → V ⊗ K (4.42)

γ : V → V ∗ ⊗ K (4.43)

The topological invariant is d = deg(V ). The definitions of stability and polystability
for Sp(2n, R), given in full in [26], amount to an inequality on the degrees of subbundles
in 2-step filtrations of V that are compatible with the Higgs field. For polystable
Sp(2n, R)-Higgs bundles the invariant d has to satisfy the bound:

0 6 |d| 6 n(g − 1) (4.44)

For each value of d = deg(V ) in the range (4.44), we get a moduli space of polystable
Sp(2n, R)-Higgs bundles, denoted by Md(Sp(2n, R)). These spaces are complex alge-
braic varieties of dimension (g − 1)(2n2 + n) but in general they have singularities (at
decomposable Sp(2n, R)-Higgs bundles). This is the first obstacle to full implementa-
tion of the Morse theory program. We can nevertheless describe the Sp(2n, R)-Hodge
bundles, i.e. the critical points of the S1-action on Md(Sp(2n, R)) given by (4.3), and
identify the minima.

The Sp(2n, R)-Higgs bundle equation becomes

FA + ββ∗ − γ∗γ = 0 (4.45)

where A is a connection on V and the adjoints on β, γ are taken with respect to a fixed
metric on V . The Hitchin function is given in this situation by

f(V, β, γ) = ||β||2 + ||γ||2 (4.46)

where the L2 norms are computed with respect to the fixed metric on V . Combining
(4.45) and (4.46) yields
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f(V, β, γ) = −d + 2||β||2 = d + 2||γ||2 (4.47)

Define the loci Nd ⊂ Md(Sp(2n, R)) by

Nd = {(V, β, γ) ∈ Md(Sp(2n, R)) |β = 0 if d 6 0, or γ = 0 if d > 0} (4.48)

It follows from (4.47) that Nd is a subset of fmin, the locus of global minima of f . It
does not follow - and in fact is not always true - that all global minima lie in Nd.

The Hodge bundles are as in Definition 4.8, with further constraints imposed by sta-
bility on the ranks and degrees (see Corollary 6.6 in [26]). Using the criterion described
in Section 4.2, we thus get the following characterization of the minima.

Proposition 4.13. Let (V, β, γ) be a fixed point of the S1 action which lies in the

smooth locus of Md(Sp(2n, R)).

(1) If |d| < n(g − 1) then (V, β, γ) ∈ fmin if and only if (V, β, γ) ∈ Nd.

(2) If d = −n(g − 1) then (V, β, γ) ∈ fmin if and only if (V, β, γ) ∈ Nd or it is a

Hodge bundle with

V =

{

⊕q
j=−q L−1K−2j if n = 2q + 1

⊕q+1
j=−q LK−2j if n = 2q + 2 6= 2

(4.49)

where L is a line bundle such that L2 = K and, with respect to this decomposition

for V and the corresponding decomposition of V ∗,

β =











0 . . . 0 1
...

. . .
. . . 0

0 1
. . .

...

1 0 . . . 0











and γ =











0 . . . 0 0
...

. . .
. . . 1

0 0
. . .

...

0 1 . . . 0











(4.50)

(3) If d = n(g − 1) the result is the same as for d = −n(g − 1) but with (V, β, γ)
replaced by (V ∗, γt, βt).

Remark 4.14. In the case n = 2 and |d| = 2g − 2, i.e. for maximal Sp(4, R)-Higgs
bundles, there are additional possibilities for the Hodge bundles, as described below
in Section 4.4.3. In the case n = 1 we have Sp(2, R) ≃ SL(2, R), a case analyzed by
Hitchin in[34].

This result is not sufficient to identify all minima because fixed points of the S1-
action can occur at singular points. One has to examine ‘by hand’ whether such critical
points are minima of the Hitchin functional. In the case of Sp(2n, R)-Higgs bundles,
generalizing Hitchin’s results in [34] for SL(2, R), one can explicitly construct paths in
Md(Sp(2n, R)) through such Hodge bundles and along which the Hitchin function is
decreasing. It follows that the minima all lie in the smooth locus and hence are all of
the form given in Proposition 4.13.

Having characterized the minima of the Hitchin function on the spaces Md(Sp(2n, R)),
we can now - in principle - use Theorem 4.4 to investigate the number of connected com-
ponents.
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In the case |d| < n(g − 1), Proposition 4.13 says that we need to examine only the
space Nd. The objects in this space are so-called quadratic pairs (V, q) where q is a
(possibly degenerate) quadratic form on V or V ∗ with values in the line bundle K. A
good notion of stability can be formulated for such objects and moduli spaces can be
constructed (see [26]). At present the only case for which the connectedness of these
spaces is known is the case of rank two quadratic pairs, in which case they are connected
(see [26] and [33]) and we get

Proposition 4.15. The moduli spaces Md(Sp(4, R)) are connected for all |d| < 2g − 2

Remark 4.16. It is reasonable to conjecture that for all n and all 0 6 |d| < n(g− 1) the
moduli spaces Md(Sp(2n, R)) are connected.

The situation is better for extremal values of d, i.e. in the cases where d = 0 or
|d| = n(g − 1). In the case d = 0, the critical points all have β = γ = 0 and we can
identify fmin = N0 with M(n, 0), the moduli space of polystable rank n vector bundles.
Since M(n, 0) is known to be connected, so therefore is M0(Sp(2n, R)).

In the case |d| = n(g − 1) we see two new phenomena:

(1) Multiple components. The two cases in parts (2) and (3) of Proposition 4.13
already show that the moduli spaces M±n(g−1)(Sp(2n, R) have multiple compo-
nents. In fact, there are at least as many components of the second type as there
are choices for the line bundle L, i.e. for a square root of K. We discuss this in
Section 4.4.1

(2) Teichmuller components. In the case of Sp(2, R) = SL(2, R), it is well known
(see [30] and also [34]) that some6 of the components of Mg−1(Sp(2, R) can be
identified with Teichmuller space. For n > 2 a subset of the extra maximal
components share key properties similar to Teichmuller space and are referred
to as ‘higher Teichmuller’ or Hitchin components. We discuss this in Section
4.4.2

4.4.1. Cayley transform and new invariants. A distinguishing feature of polystable
Sp(2n, R)-Higgs bundles for which |d| = n(g−1) is that one of the two parts of the Higgs
field has to have maximal rank as a bundle endomorphism (see Proposition 3.22 of [26]).
For example, if (V, β, γ) is polystable with deg(V ) = n(g − 1) then γ : V → V ∗ ⊗ K is
an ismorphism.7 This is manifestly true for the Hodge bundles described in parts (2)
and (3) of Proposition 4.13 in which both β and γ are non-trivial but applies equally
to other Hodge bundles or the Higgs bundles which are not critical points. Notice that
for all such Higgs bundles, say with positive maximal d, the map γ is a symmetric
non-degenerate bundle map. After twisting by a line bundle K−1/2 (i.e. a square root
of K−1), we thus get a bundle W = V K−1/2 with a symmetric, non-degenerate map

q = γ ⊗ 1K−1/2 : W → W ∗ (4.51)

The pair (W, q) defines an orthogonal bundle, i.e. a bundle with structure group O(n, C).
As a result of this emergence of a new structure group new characteristic classes, namely

6For a surface of genus g the number is 22g, to be precise.
7If d = −n(g − 1) then β : V ∗ → V ⊗ K must be an isomorphism.
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the Stiefel-Whitney classes for the orthogonal bundle, separate Mn(g−1)(Sp(2n, R) into
components with fixed values of the new classes. For orthogonal bundles over a Riemann
surface X there are two Stiefel-Whitney classes with values in H1(X, Z2) and H2(X, Z2)
respectively, and thus a total of 2.22g possibilities. Notice, furthermore that in each of
these components the Higgs bundles in the minimal submanifold Nn(g−1) have β = 0 and
are thus fully determined by the data defining the orthogonal bundles. This means that
Nn(g−1) can be identified with the moduli space of polystable principal O(2n, C)-bundles
and hence, by the results of [49], is connected. In addition, there are the components
on which the minima are single points represented by the Hodge bundles of the type
described in parts (2) and (3) of Proposition 4.13. Since there are 22g choices for the
line bundle L (i.e. for the square root of K), we get finally:

Theorem 4.17 ([26], Theorem 7.14). On a genus g closed Riemann surface, M±n(g−1)

has 3.22g connected components if n > 3.

Much of the above discussion reflects general features seen in those cases where the
group G has the property that the associated symmetric space G/H is of Hermitian
type. 8 In that context the invariant d is known as the Toledo invariant and the bound
(4.44) is called the Milnor-Wood bound. If G is of Hermitian type then the Higgs
fields for G-Higgs bundles with maximal Toledo invariant specialize in a way that results
in the appearance of a new structure group called the Cayley partner to G. This, in
turn, identifies new invariants which distinguish multiple components of Mmax(G), the
moduli space of polystable G-Higgs bundles with maximal Toledo invariant.

Under the identification (2.17), the G-Higgs bundles with maximal Toledo invariant
correspond to special surface group representations in G. Such maximal representations
have been intensively studied by a variety of methods and are known to have special
dynamical and geometric properties (see [15, 16, 17] for surveys). While many features
are seen most easily from the point of view of surface group representations, to-date
the Morse theory methods described above provide the most effective tools for counting
components of the moduli spaces.

4.4.2. Hitchin components. The Hodge bundles of parts (2) and (3) in Proposition
4.13 illustrate a phenomenon that can be traced back to the fact that the group
Sp(2n, R) is a split real form of a complex reductive group. In the case of the split
real form PSL(2, R), a hyperbolic structure on X determines a (Fuchsian) represen-
tation of π1(X) in PSL(2, R) and this leads to the identification of a component of
Rep(π1(X), PSL(2, R)) with the Teichmuller space for the surfaces of genus g (see [30]).
In [34] Hitchin showed how to identify the components in Mg−1(PSL(2, R)) which cor-
respond to these representations. The minima of the Hitchin function on these compo-
nents can be identified as the n = 1 case of the Hodge bundles of part (2) in Proposition
4.13. In the case of other split real forms G (such as SL(n, R), Sp(2n, R), SO(n, n +
1), SO(n, n)), the Lie algebra contains principal three dimensional subgroups which de-
fine homomorphisms of PSL(2, R) into G. Composing this embedding with the Fuchsian
representations leads to so-called higher Teichmuller components in Rep(π1(X), G) or
correspondingly in the the moduli space of G-Higgs bundles. In the case of Sp(2n, R),

8see[12] for further examples



34 S. B. BRADLOW AND G. WILKIN

these are precisely the components for which the minima of the Hitchin function are as
in part (2) in Proposition 4.13.

Remark 4.18. The Hitchin components can also be identified by means of another map
defined by Hitchin. Unlike the function define in Section 4, this is a map

h : M(G) →
⊕

i

H0(Kpi) (4.52)

from the moduli space M(G) to a linear space given by
⊕

i H
0(Kpi) where the powers

pi are the degrees of Ad-invariant homogeneous polynomials which generate the ring
of all such polynomials on the summand mC ⊂ g. Here, as usual, K is the canonical
bundle on X and H0 denotes the space of holomorphic sections. In [35] Hitchin showed
that when G is a split real form, this map admits sections. The image of these sections
are precisely the Hitchin components.

4.4.3. The case of Sp(4, R). We end with a brief account of the special case of G =
Sp(4, R) (see [13], [28], [31] for more details) . In this case, the Higgs bundles are defined
by triples (V, β, γ) where V is a rank 2 bundle of degree d with 0 6 |d| 6 2g − 2. For
the Higgs bundles with |d| = 2g− 2, say d = (2g− 2) for definiteness, the bundle in the
Cayley partner is an orthogonal bundle of rank two, i.e. it has structure group O(2, C)
and thus topological type determined by Stiefel-Whitney classes w1 ∈ H1(X, Z2) and
w2 ∈ H2(X, Z2). By a classification result of Mumford ([43]) for such bundles:

Proposition 4.19. The Higgs bundle (V, β, γ) in M2g−2(Sp(4, R) can be taken to be

one of the following types:

(1) V = L⊕ L−1K, where L is a line bundle on X, and with respect to this decom-

position,

γ = ( 0 1
1 0 ) ∈ H0(S2V ∗ ⊗ K) and β =

(

β1 β3

β3 β2

)

∈ H0(S2V ⊗ K). (4.53)

In this case the first Steifel-Whitney classes of the Cayley partner vanishes. If

(V, β, γ) is a polystable Higgs bundle then deg(L) must lie in the range g − 1 6

deg(L) 6 3g − 3 and β2 6= 0 if l > g − 1.

(2) V = π∗(L̃ ⊗ ι∗L̃−1)K1/2 where π : X̃ −→ X is a connected double cover, L̃ is

a line bundle on X̃, and ι : X̃ −→ X̃ is the covering involution. In this case

the first Steifel-Whitney classes of the Cayley partner, w1 ∈ H1(X; Z/2), is the

non-zero element defining the double cover.

(3) (V, β, γ) = (V1, β1, γ1)⊕ (V2, β2, γ2) where (Vi, βi, γi) are maximal Sp(2, R)-Higgs

bundles. In this case the first Steifel-Whitney classes of the Cayley partner is

the sum of the first Stiefel-Whitney classes for the Cayley partners to (Vi, βi, γi).

As in Section 4.4.1, the Stiefel-Whitney classes of the Cayley partner label separate
components of M2g−2(Sp(4, R). Moreover, in case (1) of Proposition 4.19, i.e. when
w1 = 0, the degree of the line bundle L constitutes an additional invariant9 We thus get
a decomposition of M2g−2(Sp(4, R) into:

9This can also be realized as an integral lift of the second Steifel-Whitney class w2 ∈ H2(X, Z2).
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M2g−2(Sp(4, R) = (
⋃

w1 6=0,w2

Mw1,w2) ∪ (
⋃

06l62g−2

M0
l ) (4.54)

where Mw1,w2 denotes the component in which the Higgs bundles are represented by
(V, β, γ) of type (2) with Stiefel-Whitney classes w1, w2, and M0

l denotes the component
in which the Higgs bundles are represented by (V, β, γ) of type (1) in Proposition 4.19
with deg(L) = l. Notice that when l = 3g − 3, the component β2 in (4.53) must be a
non-zero section of L−2K3, which means that

L2 = K3 (4.55)

and β2 can be taken to be the identity section of the trivial line bundle. The component
M0

3g−3 thus splits further into components determined by the 22g choices of L satisfying

(4.55). Denoting these by K3/2, we get

M0
3g−3 =

⋃

K3/2

MK3/2 (4.56)

The components identified in (4.54) and (4.56) are not a priori connected, but we can use
the Hitchin function (and Theorem 4.4) to investigate their connectedness. The minima
of the Hitchin function on each of these components can be identified as follows:

(1) For g − 1 < l 6 3g − 3, (V, β, γ) represents a minimum of the Hitchin function
on M0

l if and only if it isomorphic to a Higgs bundle of the form in (1) of
Proposition 4.19 with β1 = β2 = 0,

(2) On all other components, i.e. M0
g−1 or Mw1,w2, (V, β, γ) represents a minimum

of the Hitchin function if and only if β = 0.

Notice that the minima on MK1/2 are precisely the Hodge bundles identified in Propo-
sition 4.13, while the minima on the components M0

ν are additional Hodge bundles with
β 6= 0. These are the exceptional Hodge bundles referred to in Remark 4.14. The com-
ponents MK1/2 are the Hitchin components for Sp(4, R) (see Section 4.4.2) while the
other components M0

l have no analogs in M(Sp(2n, R) for n 6= 2.

The connectedness of the minimal submanifolds, and hence of the components, is
proved in [31]. It is interesting to note that in many cases, the minimal submanifolds
can be shown to be connected by explicitly describing the entire loci: see [13] for
descriptions of M0

l for g− 1 < l < 2g− 2 and the Hitchin components MK3/2. We thus
arrive at a final count of connected components:

Theorem 4.20. The moduli space M2g−2(Sp(4, R) has

2(22g − 1) + (2g − 2) + 22g = 3 · 22g + 2g − 4 .

connected components.
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