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Abstract. Convolution in Borel-Moore homology plays an important role in Nakajima’s construction
of representations of the Heisenberg algebra and of modified enveloping algebras of Kac-Moody alge-
bras. In its most basic form, convolution between two quiver varieties is given by pullback and then
pushforward via the Hecke correspondence for quivers.

In previous work we showed that the Hecke correspondence has a Morse-theoretic interpretation
in terms of spaces of flow lines. The goal of this paper is to show that the topological information
that defines generators for Nakajima’s representations can be encoded in the cup product for a Morse
complex defined on the smooth space of representations of a quiver without relations, and then pulling
back to the subvariety of representations that do satisfy a given set of relations. The results are valid
for the main motivating example of Nakajima quivers, as well as other quivers with relations derived
from these (for example handsaw quivers).

For the norm square of a moment map on the space of representations of a quiver, the usual
Morse-Bott-Smale transversality condition on the space of flow lines fails, however a weaker version of
transversality is still satisfied. A major part of the paper is spent developing a general theory in this
setting of weak transversality from which one can recover the usual construction of the differentials
and cup product on the Morse complex by adding an intermediate step of taking cup product with a
certain Euler class, which is explicitly computable for the space of representations of a quiver.

1. Introduction

A well known tool to compute the cohomology of a space X is to begin with a filtration ∅ = X−1 ⊂
X0 ⊂ · · · ⊂ Xn = X and then use a spectral sequence to compute the cohomology. The Morse-
theoretic point of view is to approach this problem by considering a function f : X → R together with
an associated gradient flow or pseudogradient flow ϕ : X ×R→ X. If the flow has good compactness
and convergence properties, then there is a canonical Morse filtration of X associated to f . The main
theorem of Morse theory says that, if the flow also has good local behaviour around the critical points
of X (for example f is Morse or Morse-Bott), then the groups on the first page of the spectral sequence
can be expressed in terms of the cohomology of the critical sets together with their Morse indices.

If, in addition to the properties above, the flow has well-behaved spaces of flow lines between critical
sets (for example, if the function is Morse-Bott-Smale so that the stable and unstable manifolds always
intersect transversely) then the differentials and the cup product in the spectral sequence can be
computed using pullback/pushforward homomorphisms via spaces of flow lines. The benefit of using
Morse theory is that all of the data used above (the critical sets, their indices and spaces of flow lines
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between critical points) can be described analytically using the function f and the flow ϕ, thus giving
us a concrete way to compute the terms in the spectral sequence.

There are many interesting examples that do not immediately satisfy the above conditions. For
example, transversality may fail, or (even worse) the space may be singular. The main motivating
examples for this paper are the space of representations Rep(Q,v) of a quiver Q with a fixed dimension
vector v as well as the subvarieties Rep(Q,v,R) of representations satisfying a given set R of relations.
The space Rep(Q,v) is a vector space with a linear action of a complex reductive group G and a
symplectic structure for which the action of the maximal compact subgroup K is Hamiltonian, from
which we obtain a moment map µ : Rep(Q,v)→ k∗ defined up to a constant central element α ∈ Z(k∗).
This setup fits into a large class of examples for which the Morse theory of ‖µ − α‖2 has been well-
studied (cf. [2], [12]) and it turns out that the associated stratification is equivariantly perfect with
respect to the action of K, which leads to very explicit inductive formulae for the cohomology of the
quotient space [12].

The results of [29] completely classify the flow lines of ‖µ − α‖2 on the space Rep(Q,v) and show
that the space of flow lines is related to the Hecke correspondence. It is then natural to ask whether
the Morse-Bott-Smale theory can be extended to this setting and whether the pullback/pushforward
homomorphisms via the Hecke correspondence that appear in Nakajima’s work [17], [18], [19] also
appear when constructing the cup product on the spectral sequence. The goal of this paper is to prove
that this is indeed the case (cf. Theorem 1.4).

In Section 2.6 we show that transversality fails in this setting, however a weaker form of transversal-
ity is still satisfied, which is defined as follows. Given a Riemannian manifold M and a smooth function
f : M → R, one can define the downwards gradient flow ϕt(x0) satisfying ∂

∂tϕt(x0) = −∇f(ϕt(x0))

and ϕ0(x0) = x0. If the flow has good properties such as those in Conditions (1)–(3) of [30] (M is real
analytic, f is analytic with isolated critical values and the flow satisfies a compactness condition) then
for each pair of critical sets Cℓ and Cu with f(Cℓ) < f(Cu), we can define the stable and unstable sets

W+
Cℓ

:= {x ∈M | lim
t→∞

ϕt(x) ∈ Cℓ}

W−
Cu

:= {x ∈M | lim
t→−∞

ϕt(x) ∈ Cu}, and W−
Cu,0

:= W−
Cu
\ Cu.

and then the space of points lying on a flow line

F
u,0
ℓ,0 := W+

Cℓ
∩W−

Cu
.

Then the weak transversality condition is defined as follows.

Definition 1.1 (cf. Definition 6.1). Let M be a Riemannian manifold and f : M → R a minimally
degenerate smooth function satisfying Conditions (1)–(3) of [30]. The spaces of flow lines satisfies
weak transversality if the following conditions hold.

(T1) The space of flow lines F
u,0
ℓ,0 has a tubular neighbourhood in W−

Cu,0
, denoted Du

ℓ → F
u,0
ℓ,0 .

(T2) The stratum W+
Cℓ

has a tubular neighbourhood in M denoted Ṽℓ →W+
Cℓ

, which restricts to a
disk bundle Vℓ → F

u,0
ℓ,0 such that Du

ℓ is a subbundle of Vℓ.
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Remark 1.2. The usual Morse-Bott-Smale transversality condition is equivalent to the condition that
Du

ℓ = Vℓ.

For Morse-Bott-Smale functions, the differentials and cup product can be constructed using pull-
back/pushforward homomorphisms via spaces of flow lines connecting critical sets (cf. [4]). In the
setting of weak transversality, one can still use spaces of flow lines to define differentials and cup
product on the Morse complex, however now we need to include an additional step of taking cup
product with the Euler class of the quotient bundle Vℓ/D

u
ℓ (cf. Section 6.2).

Proposition 2.29 shows that ‖µ − α‖2 : Rep(Q,v) → R satisfies weak transversality, and therefore
the definition is satisfied for a large class of interesting examples. The key to proving this is the local
analysis of [29], which shows that analytic questions about the structure of the space of flow lines near
the upper critical set can be reduced (up to homeomorphism) to algebraic questions on a linearisation
of the unstable set, which we call the negative slice. Moreover, this homeomorphism restricts to a
homeomorphism in any G-invariant subset [29, Cor. 4.24]. The space of flow lines then corresponds
to a subvariety of the negative slice with an explicit description (cf. Section 2.6.1).

Remark 1.3. There are many versions of Morse theory where one perturbs the function to obtain
a well-behaved Morse-Smale function. We want to avoid this here, since the unperturbed function
‖µ−α‖2 : Rep(Q,v)→ R contains a lot of useful topological information; for example the critical sets
correspond to quiver varieties of smaller dimension and the flow lines are related to Nakajima’s Hecke
correspondence [29]. Moreover, the same is true after restricting to a subvariety of representations
that satisfy a given set of relations, in which case perturbing the function is more difficult since lack
of smoothness means that arbitrary perturbations may create a function whose gradient flow does not
preserve the subvariety.

The main point of this paper is to show that the topological information that defines generators
for Nakajima’s representations from [19] is encoded in the cup product on the Morse complex for
the unperturbed function ‖µ− α‖2, which is why we work with weak transversality here, rather than
perturbing the function.

This theory works on the smooth space Rep(Q,v), however from the point of view of representation
theory (cf. [17], [18], [19], [20], [21]) it is more interesting to study the subset of representations
Rep(Q,v,R) ⊂ Rep(Q,v) that satisfy a given set R of relations. The most important example is
the class of Nakajima quiver varieties, where the relations take the form of a complex moment map,
however the results below are not restricted to this class of examples.

The gradient flow of ‖µ − α‖2 on Rep(Q,v) is generated by the complex reductive group G, and
therefore preserves the subset Rep(Q,v,R). From this we can construct an injective map from each
critical set in Rep(Q,v,R) into the corresponding critical set in Rep(Q,v), and so the cup product
homomorphism defined above pulls back to a homomorphism between the cohomology of critical sets
on the singular space Rep(Q,v,R). The Kirwan surjectivity theorem of McGerty and Nevins [16]
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shows that, for Nakajima quivers, all of the classes of H∗(M(Q,vℓ,R)) appear in the image of the
pullback H∗(M(Q,vℓ))→ H∗(M(Q,vℓ,R)) for each vℓ ≤ v.

In order to construct a convolution homomorphism between critical sets on the singular space, we
need to take cup product with a well-chosen cohomology class on the ambient smooth space. This
turns out to be the cup product of a Thom class τ̃ of an explicitly defined submanifold of the space
of flow lines (cf. Corollary 9.2 and Corollary 9.5) with a Chern class ξ̃ (cf. Lemma 9.7). The main
result of this paper is Theorem 9.8, which shows that convolution is induced by cup product.

Theorem 1.4 (Theorem 9.8). Let Q be a quiver with a set R of complete quadratic relations that
are fully restricted from those for a Nakajima quiver (cf. Definitions 2.2 and 3.2). Consider a pair
of adjacent critical sets Cu (upper) and Cℓ (lower) for the moment map energy function ‖µ − α‖2 :

Rep(Q,v,R) → R corresponding to quiver varieties M(Q,vu,R) and M(Q,vℓ,R) with dimension
vectors vu < vℓ = vu + ek ≤ v.

Then the Poincaré dual of convolution in Borel-Moore homology via the Hecke correspondence

HBM
∗ (M(Q,vℓ,R))

π∗
ℓ−→ HBM

∗ (B(Q,vu,vℓ,R))
(πu)∗−→ HBM

∗ (M(Q,vu,R))

is induced by cup product with τ̃ ⌣ ξ̃ on the Morse complex for the moment map energy function on
the ambient smooth space Rep(Q,v)×Gr(vu,vℓ).

Organisation of the paper. Section 2 gives a self-contained overview of the necessary definitions
and constructions needed to develop the Morse theory on the space of representations of a quiver in
later sections. Section 3 contains a general construction that can be used to show that the moduli
space and negative slice are smooth for a large class of quivers with relations, which we can then use to
set up the deformation theory of these spaces in Section 9. Section 4 then recalls how to construct the
differentials and cup product on the first page of the spectral sequence associated to a Morse filtration.
The construction here only uses the existence of a Morse filtration and is written in a way that leads
to Section 5, which uses the main theorem of Morse theory to further refine the construction of the
cup product and differentials so that it is expressed in terms of relative cohomology groups localised
around the critical points and spaces of flow lines. We focus on the case of adjacent critical sets
(which is sufficient to construct generators for the representations of [19]), as the general case requires
compactifying spaces of flow lines which we defer to a later paper.

Up until this point all the results are valid for functions f : Z → R satisfying Conditions (1)–(5) of
[30] (in particular, we do not require the space Z to be smooth). In Section 6 we now restrict to the
case where the space is a manifold and the function satisfies Kirwan’s minimal degeneracy condition
(cf. [12]) as well as the weak transversality conditions of Definition 6.1. Now the relative cohomology
groups of Sections 4 and 5 can be rewritten as cohomology groups of the critical sets and spaces of flow
lines, and the differentials and cup product can be expressed in terms of pullback and cup product
maps between these spaces (cf. the diagrams (6.5) and (6.6)).

In Section 7 we recall some facts about Borel-Moore homology before showing in Section 8 that
the homomorphisms used to construct the differentials and cup product are Poincaré dual to pullback
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and pushforward in Borel-Moore homology. Section 9 then contains the main result (Theorem 9.8),
which shows that cup product with the Thom class of a certain submanifold then pulls back to
a homomorphism which is Poincaré dual to convolution in Borel-Moore homology on the space of
representations satisfying a given set of relations.

2. Background

In this section we recall the important definitions and theorems from [29] and [30] which will be
used in the rest of the paper. The original sources used for the material on quivers are [11], [17], [19]
and [9]. The notation and setup follows that used in [29].

2.1. The space of representations of a quiver. A quiver is a directed graph, consisting of a set
of vertices I, edges E and head/tail maps h, t : E→ I. The quiver is finite if the sets I and E are finite.
A complex representation of a quiver Q consists of a collection of complex vector spaces {Vk}k∈I and
C-linear homomorphisms {xa : Vt(a) → Vh(a)}a∈E. The dimension vector of a representation is the
vector v := (dimC Vk)k∈I ∈ ZI

≥0.
The vector space of all complex representations of Q with fixed dimension vector v is denoted

(2.1) Rep(Q,v) :=
⊕
a∈E

Hom(Vt(a), Vh(a)).

The group

(2.2) Gv :=
∏
k∈I

GL(Vk,C)

acts on the space Vect(Q,v) :=
⊕

k∈I Vk and therefore on Rep(Q,v) via the induced action on each
vector Hom(Vt(a), Vh(a))

(2.3) (gi)k∈I · (xa)a∈E :=
(
gh(a)xag

−1
t(a)

)
a∈E

.

Given a Hermitian structure on each vector space Vk, we can define the unitary group U(Vk) and
therefore define

Kv :=
∏
k∈I

U(Vk).

This acts on Rep(Q,v) via the inclusion Kv ↪→ Gv. The Lie algebras of Gv and Kv are denoted
gv and kv respectively. Given a representation x ∈ Rep(Q,v), the infinitesimal action of gv on the
tangent space TxRep(Q,v) is denoted ρCx : gv → TxRep(Q,v) and given by the following formula

(2.4) ρCx (u) :=
d

dt

∣∣∣∣
t=0

etu · x =
⊕
a∈E

(uh(a)xa − xaut(a)) ∈
⊕
a∈E

Hom(Vt(a), Vh(a)) ∼= Rep(Q,v)

The action of kv is denoted ρx : kv → Rep(Q,v) and is defined via the inclusion kv ↪→ gv. The
distinction between ρCx and ρx will be important when using the adjoint of these homomorphisms; for
example when defining the local slice in Definition 2.10.
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Given a quiver Q, let v1 = (v
(1)
k )k∈I ∈ ZI and v2 = (v

(2)
k )k∈I ∈ ZI be dimension vectors for Q. For

each k ∈ I, let V (1)
k and V

(2)
k denote complex vector spaces of dimension v

(1)
k and v

(2)
k respectively. We

define the spaces

Hom0(Q,v1,v2) :=
⊕
k∈I

Hom(V
(1)
k , V

(2)
k ) and Hom1(Q,v1,v2) :=

⊕
a∈E

Hom(Vt(a), Vh(a)).

These are spaces of homomorphisms along length 0 and length 1 paths in Q. Note that gv ∼=
Hom0(Q,v,v). The dimension of Hom0(Q,v1,v2) is denoted by

v1 · v2 := dimCHom0(Q,v1,v2) =
∑
k∈I

v
(1)
k v

(2)
k .

The Ringel form (cf. [9, Sec. 2]) on ZI is

(2.5) 〈v1,v2〉 := dimCHom0(Q,v1,v2)− dimCHom1(Q,v1,v2) =
∑
k∈I

v
(1)
k v

(2)
k −

∑
a∈E

v
(1)
t(a)v

(2)
h(a).

The Ringel form leads to a simple expression for the Euler characteristic of the deformation complex
(2.38), which we use in (2.41).

2.2. Representations of a quiver with relations. A path in Q is a concatenation of a finite
number of edges, denoted p = an · · · a1 with h(aj) = t(aj+1) for each j = 1, . . . , n− 1. The head and
tail of the path p = an · · · a1 are h(p) := h(an) and t(p) := t(a1). A path p = an · · · a1 determines a
homomorphism Rep(Q,v)→ Hom(Vt(p), Vh(p)) given by

x 7→ xp := xan · · ·xa1 .

Given a representation x = x1 ⊕ x2 ∈ Rep(Q,v1) ⊕ Rep(Q,v2) with vector spaces denoted by
Vect(Q,vj) =

⊕
k∈I V

(j)
k for j = 1, 2, a path p = an · · · a1 determines a homomorphism dpx :

Hom1(Q,v2,v1)→ Hom(V
(2)
t(p), V

(1)
h(p)) defined as follows. For each a ∈ E and j = 1, 2, let (xj)a : V

(j)
t(a) →

V
(j)
h(a) denote the homomorphisms in the representations x1 and x2, and for any δx ∈ Hom1(Q,v2,v1)

define

(2.6) dpx(δx) :=

n∑
ℓ=1

(x1)an · · · (x1)aℓ+1
(δx)aℓ(x2)aℓ−1

· · · (x2)a1 .

Let Pt,h denote the set of all paths with a given tail t ∈ I and head h ∈ I. Given a quiver Q, a
relation r with head h(r) ∈ I and tail t(r) ∈ I is a finite C-linear combination of paths, denoted by

r =
∑

p∈Pt(r),h(r)

λpp.

A quadratic relation is a relation for which the only paths p with λp 6= 0 have length two. Any relation
determines an algebraic map νr : Rep(Q,v)→ Hom(Vt(r), Vh(r)) given by

x 7→
∑
p

λpxp.
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Given a finite set of relations R, define ν : Rep(Q,v)→
⊕

r∈RHom(Vt(r), Vh(r)) by

(2.7) ν(x) =
⊕
r∈R

νr(x).

A representation of (Q,R) is a representation in the kernel of ν. The space of all representations
of (Q,R) with dimension vector v is the subset Rep(Q,v,R) := ν−1(0) ⊂ Rep(Q,v). For example,
quivers with relations are used to construct hyperkähler ALE 4 manifolds [13], moduli spaces of
instantons on hyperkähler ALE 4 manifolds [14], and more generally the hyperkähler quotients of [17],
[19], [20], [21]. The handsaw quivers of [22] are another important example of a quiver with relations.
It will be useful to note that all of these examples have quadratic relations.

With a view towards studying the deformation complex (2.38), we define

(2.8) Rel(Q,v2,v1,R) :=
⊕
r∈R

Hom(V
(2)
t(r), V

(1)
h(r))

for a finite set of relations R. For each r ∈ R, write r =
∑

p∈Pt(r),h(r)
λpp. Given a representation x =

x1⊕x2 ∈ Rep(Q,v1,R)⊕Rep(Q,v2,R), we can extend the homomorphism (2.6) to a homomorphism
dνx : Hom1(Q,v2,v1)→ Rel(Q,v2,v1,R) given by

(2.9) dνx(δx) :=
∑
r∈R

∑
p∈Pt(r),h(r)

λp(r)dpx(δx).

The usual deformation theory shows that a point in the moduli space (2.22) is smooth if ρCx is injective
and dνx is surjective in the following deformation complex

(2.10) Hom0(Q,v,v) Hom1(Q,v,v) Rel(Q,v,v,R),
ρCx dνx

in which case the tangent space to the moduli space is given by the middle cohomology of the above
complex.

The following lemma is used in Section 2.4 to show that the negative slice can be defined using the
deformation complex (2.38).

Lemma 2.1. Let R be a finite set of relations, let x = x1 ⊕ x2 ∈ Rep(Q,v1) ⊕ Rep(Q,v2) and let
δx ∈ Hom1(Q,v2,v1). Then ν(x) = ν(x+ δx) if and only if δx ∈ ker dνx.

Proof. With respect to the decomposition Rep(Q,v1,R)⊕ Rep(Q,v2,R), for each k ∈ I let V
(1)
k and

V
(2)
k denote the vector spaces at vertex k.
First note that for any pair of edges a1, a2 ∈ E with t(a2) = h(a1) we have

(x2)a2(δx)a1 = 0, (δx)a2(x1)a1 = 0, (δx)a2(δx)a1 = 0.

The first equation above follows from the fact that the domain of (x1)a2 is V
(2)
t(a2)

and the image of
(δx)a1 is contained in V

(1)
h(a1)

= V
(1)
t(a2)

, so the composition is zero. The other equations follow from
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similar reasoning. Therefore for each path p = an · · · a1 we have

(x+ δx)p = (x1)an · · · (x1)a1 + (x2)an · · · (x2)a1 +
n∑

ℓ=1

(x1)an · · · (x1)aℓ+1
(δx)aℓ(x2)aℓ−1

· · · (x2)a1

= (x1)p + dpx(δx) + (x2)p.

Summing the above formula for each relation r =
∑

p λpp ∈ R gives us

νr(x+ δx) =
∑
p

λp(x+ δx)p =
∑
p

λp ((x2)p + (x1)p) +
∑
p

λpdpx(δx)

and so summing over all relations r ∈ R leads to

ν(x+ δx) = ν(x) + dνx(δx).

Therefore ν(x) = ν(x+ δx) if and only if dνx(δx) = 0. □

Now consider the case where the relations are all quadratic. Each relation then has the form

r =
∑

p∈Pt(r),h(r)

λp(r)p, p = a2(p)a1(p).

Definition 2.2. A set R of quadratic relations is complete if and only if
(1) for each edge a ∈ E and every relation r ∈ R such that h(a) = h(r), there exists a path

p ∈ Pt(r),h(r) such that λp(r) 6= 0 and a = a2(p), and
(2) for each edge a ∈ E such that t(a) = t(r) for some relation r ∈ R, then r is the unique relation

with this property, and there exists a unique path p ∈ Pt(r),h(r) such that λp(r) 6= 0 and
a = a1(p).

Completeness is used in Lemma 2.6, which gives a formula to compute the cokernel of the homo-
morphism dνx used in the deformation complex (2.38). This formula is much easier to use in examples,
since it only depends on the dimension of the image of a representation. The following examples show
that completeness occurs for many examples of interest; in particular all of the quivers from [13], [14],
[17], [19], [20], [21] and [22] have complete sets of quadratic relations.

Example 2.3 (Nakajima quivers have complete relations). A Nakajima quiver is a quiver Q with
vertices I, edges E and head/tail maps h, t : E → I such that each edge a ∈ E has a conjugate
ā 6= a such that h(ā) = t(a), t(ā) = h(a) and ¯̄a = a. Choose a subset of edges E0,1 ⊂ E such that
E = E0,1 ∪ E0,1 and E0,1 ∩ E0,1 is empty. For each vertex k ∈ I there is a single relation

(2.11) rk =
∑

a∈E0,1 :h(a)=k

aā−
∑

a∈E0,1 : t(a)=k

āa.

Therefore t(rk) = h(rk) for each relation rk. Let R denote the finite set of relations {rk}k∈I. From
(2.11) it is clear that for each edge a ∈ E0,1 there is a unique relation r = rh(a) such that a = a2(p) for
exactly one path p with λp(r) 6= 0. The same reasoning applies to each edge ā ∈ E0,1 since h(ā) = t(a).
Therefore the first condition of Definition 2.2 is satisfied. By explicitly examining (2.11) again, it is
clear that the second condition of Definition 2.2 is also satisfied, and so the set of relations is complete.
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Example 2.4 (Handsaw quivers have complete relations). Let Q be a “handsaw” quiver as in [22]
with edges labeled as below.

(2.12) •V1

B1
1 //

b2

""D
DD

DD
DD

DD
DD

D

B1
2

��
•V2

B2
1 //

b3

!!C
CC

CC
CC

CC
CC

C

B2
2

��
· · ·

Bn−2
1 //

bn−1

""E
EE

EE
EE

EE
EE

EE
•Vn−1

bn

##F
FF

FF
FF

FF
FF

F

Bn−1
2

��

•W1

a1

OO

•W2

a2

OO

· · · •Wn−1

an−1

OO

•Wn

For each k = 1, . . . , n− 2 there is a relation

(2.13) rk = Bk
1B

k
2 −Bk+1

2 Bk
1 + ak+1bk+1

Each relation induces a map νrk : Rep(Q,v) → Hom(Vk, Vk+1). Therefore we see that for each
k = 1, . . . , n − 2, the vertex Vk+1 satisfies Vk+1 = h(rk). For each of these vertices, we have {a ∈
E : h(a) = Vk+1} = {ak+1, B

k
1 , B

k+1
2 }. One can then see from (2.13) that the first condition of

Definition 2.2 is satisfied. Similarly, for each k = 1, . . . , n − 2, the vertex Vk satisfies Vk = t(rk) and
{a ∈ E : t(a) = Vk} = {bk+1, B

k
1 , B

k
2}. Again, one can see from (2.13) that the second condition of

Definition 2.2 is satisfied, and so the relations are complete.

The next example is an extended version of the ADHM quiver.

Example 2.5. Let Q be a quiver with two vertices, labelled V and W in the diagram below, an
arbitrary number of loops at the vertex V (labelled a1, . . . , an) and edges b1 and b2 between V and
W .

•V

a1

��

···

		

an

vv

b2
��
•W

b1

UU

Given any permutation σ ∈ Sn, define the relations

(2.14) r = a1aσ(1) + a2aσ(2) + · · ·+ anaσ(n) + b1b2 and r′ = b2b1.

Then it is easy to verify directly that these relations are complete, since each edge a1, . . . , an, b1, b2 is
the leading edge in a path appearing nontrivially in one of the relations r or r′, and also the tail of a
unique path appearing in either r or r′.

As in Lemma 2.1 above, consider a representation x = x1⊕x2 ∈ Rep(Q,v1,R)⊕Rep(Q,v2,R) and
let δx ∈ Hom1(Q,v2,v1). For each path p = a2a1 of length 2, from (2.6) we have

dpx(δx) = (x1)a2(δx)a1 + (δx)a2(x2)a1 .

and therefore the adjoint of

Hom1(Q,v2,v1) Hom(Vt(a1), Vh(a2))
dpx
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is
(dpx)

∗(u) = (x1)
∗
a2u+ u(x2)

∗
a1 .

Therefore (2.9) becomes

dνx(δx) =
∑
r∈R

∑
p∈Pt(r),h(r)

λp(r)dpx(δx)

=
∑
r∈R

∑
p∈Pt(r),h(r)

λp(r)
(
(x1)a2(p)(δx)a1(p) + (δx)a2(p)(x2)a1(p)

)
and so for u = (ur)r∈R the adjoint

Rel(Q,v2,v1,R) Hom1(Q,v2,v1)
dν∗x

is given by

(2.15) dν∗x(u) =
∑
r∈R

∑
p∈Pt(r),h(r)

λp(r)
(
(x1)

∗
a2ur + ur(x2)

∗
a1

)
.

The next lemma gives a formula for the cokernel of dνx, which only depends on the dimension of
the image of x2.

Lemma 2.6. Let R be a set of complete quadratic relations, let x = x1⊕x2 ∈ Rep(Q,v1)⊕Rep(Q,v2)

and consider

Hom1(Q,v2,v1) Rel(Q,v2,v1,R)
dνx

from (2.9). Let r be the dimension vector of (imx1)
⊥. Then if x2 = 0 we have

(2.16) coker dνx ∼= Rel(Q,v2, r,R).

In particular

(2.17) dimC coker dνx =
∑
r∈R

(v2)t(r) dimC rh(r)

Proof. First we show that u ∈ Rel(Q,v2, r,R) implies that dν∗x(u) = 0. From the definition of r,
u ∈ Rel(Q,v2, r,R) implies that imu ⊥ imx1, therefore (x1)

∗
aur = 0 for all edges a ∈ E and all

relations r ∈ R. Then (2.15) with x2 = 0 shows that dν∗x(u) = 0.
Now we use the completeness of the relations to show the converse. If u ∈ Rel(Q,v2,v1,R) \

Rel(Q,v2, r,R) then the image of u is not perpendicular to the image of x, and so there exists an edge
a ∈ E and a relation r ∈ R such that (x1)

∗
aur 6= 0. One consequence of this is that h(a) = h(r), and

so the assumption that the relations are complete and quadratic implies that there is a path p = aa′

with λp(r) 6= 0. Note that this implies that t(a′) = t(r), and therefore there exists a homomorphism
(δx)a′ ∈ Hom(Vt(a′), Vh(a′)) ⊂ Hom1(Q,v2,v1) such that

0 6= 〈(x1)a(δx)a′ , ur〉 = 〈(δx)a′ , (x1)∗aur〉 .
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The completeness of the relations then implies that r is the unique relation with t(a′) = t(r) and
p is the unique path with λp(r) 6= 0 and a1(p) = a′. This uniqueness means that in the following
expression for dν∗x, there is only one nonzero term in the sum

〈(δx)a′ , dν∗x(u)〉 = 〈dνx(δx)a′ , u〉 =
∑
r

∑
p

〈λp(r)(x1)a(δx)a′ , ur〉 =
〈
(δx)a′ , λp(r)(x1)

∗
aur

〉
.

Therefore u ∈ Rel(Q,v2,v1,R) \ Rel(Q,v2, r,R) implies that dν∗x(u) 6= 0, or equivalently dν∗x(u) = 0

implies that u ∈ Rel(Q,v2, r,R). □

Finally, there are a number of examples where dνx is surjective, which will be useful in Section
9 to show that certain subvarieties are smooth. An important example is the case of the relations
for a Nakajima quiver from Example 2.3, where ν = µC is the complex moment map. In this case
Rel(Q,v,v,R) = Hom0(Q,v,v) and so the deformation complex for the tangent space has the form

Hom0(Q,v,v) Hom1(Q,v,v) Hom0(Q,v,v)
ρCx dνx

and therefore homomorphisms in the image of dνx correspond to elements of the Lie algebra gv ∼=
Hom0(Q,v,v). The adjoint of dνx is then

dν∗x(u) =
∑
r∈R

∑
p∈Pt(r),h(r)

λp(r)
(
(x1)

∗
a2ur + ur(x2)

∗
a1

)
=

(
ut(a)x

∗
a − x∗auh(a)

)
a∈E .

Therefore the transpose with respect to the Hermitian inner product on Hom1(Q,v,v) is

(dν∗x(u))
∗ =

(
xau

∗
t(a) − u∗h(a)xa

)
a∈E

= ρCx (u
∗).

In particular, ker dν∗x
∼= ker ρCx . If the representation is stable then ker ρCx consists of the diagonal

elements of gv and therefore dνx is surjective onto gv/C.

2.3. Properties of the norm-square of the moment map. Let Q be a quiver with dimension
vector v = (vk)k∈I, and fix a Hermitian structure on the vector spaces Vk

∼= Cvk . There is an
associated symplectic structure on Rep(Q,v), defined as follows. Given x ∈ Rep(Q,v) and tangent
vectors δx1, δx2 ∈ TxRep(Q,v) ∼= Rep(Q,v), define the metric

(2.18) g(δx1, δx2) :=
∑
a∈E

Re tr ((δx1)a(δx2)
∗
a) ,

and symplectic structure

(2.19) ω(δx1, δx2) :=
∑
a∈E

Im tr ((δx1)a(δx2)
∗
a) .

Note that ω(δx1, δx2) = g(−iδx1, δx2), so that the complex structure I = −i · id is compatible with
the metric. With this complex structure and metric, the vector space Rep(Q,v) has the structure of
a Kähler manifold.
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On the Lie algebra gv, define the inner product

(2.20) 〈u1, u2〉 =
∑
k∈I

tr ((u1)k(u2)
∗
k)

and note that this is invariant under the adjoint action of Kv ⊂ Gv. Using the inner product we
identify k ∼= k∗. We will use (ρCx )

∗ : TxRep(Q,v)→ gv to denote the adjoint of the infinitesimal action
ρCx : gv → TxRep(Q,v) with respect to the metric g and the inner product on gv.

The action of Kv on Rep(Q,v) preserves the symplectic form ω and is Hamiltonian with moment
map given by

(2.21) µ(x) =
1

2i

∑
a∈E

[xa, x
∗
a] ∈ k∗v

∼= kv.

The moment map is Kv-equivariant µ(k ·x) = Adk µ(x) for all k ∈ Kv and x ∈ Rep(Q,v). The centre
of kv is

Z(kv) =
{
(αk · idVk

)k∈I | αk ∈ C for all k ∈ I
}
.

We say that α = (iαk · idVk
)k∈I ∈ Z(kv) is admissible if

∑
k∈I αk dimC Vk = 0. Note that tr(µ(x)) = 0

and so µ−1(α) is empty if α is not admissible. Given an admissible α ∈ Z(kv), the symplectic quotient
is

(2.22) Mα(Q,v) := µ−1(α)/Kv.

From now on α will always refer to an admissible central element of kv. Define the rank and α-degree
of a dimension vector v by

degα(Q,v) :=
∑
k∈I

αkvk

rank(Q,v) :=
∑
k∈I

vk

The α-slope is slopeα(Q,v) := degα(Q,v)/ rank(Q,v). A representation x ∈ Rep(Q,v) is α-stable
(resp. α-semistable) if and only if every proper non-zero subrepresentation satisfies

slopeα(Q,v′) < 0 (resp. slopeα(Q,v′) ≤ 0).

King [11, Prop. 3.1] shows that slope stability in the above sense coincides with stability from affine
GIT and that α-polystable representations are isomorphic to minimisers of ‖µ− α‖2.

The following definition is used in Lemma 2.8 to define critical points as direct sums of minimisers
of the norm-square of a shifted moment map.

Definition 2.7. Let Q be a quiver, v a dimension vector, and α = (αk)k∈I an admissible central
element of kv. Given any dimension vector 0 ≤ v′ ≤ v, the induced admissible central element on
(Q,v′) is

(2.23) α′ =
(
(αk − slopeα(Q,v′)) · idV ′

k

)
k∈I

.
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Define the energy function f : Rep(Q,v)→ R given by

f(x) = ‖µ(x)− α‖2.

With respect to the metric (2.18), the gradient of f is

grad f(x) = Iρx(µ(x)− α).

In analogy with critical points of the Yang-Mills functional studied in [2, Sec. 5], the critical point
equation grad f(x) = 0 implies that the representation x splits into subrepresentations x =

⊕n
ℓ=1 xℓ

such that each xℓ ∈ Rep(Q,vℓ) satisfies µ(xℓ) = αℓ, where the admissible central element αℓ ∈ Z(kvℓ
)

is induced from α ∈ Z(kv) by the construction of (2.23). Equivalently, a critical point is a direct sum
of minimisers of ‖µ(xℓ) − αℓ‖2 on Rep(Q,vℓ). Therefore each critical set is labelled by a vector of
dimension vectors

(2.24) (v1, . . . ,vk) such that v1 + · · ·+ vk.

This is explained in more detail in [29, Sec. 2.4]. In the following we abuse the notation and use
µ−1(αℓ) to denote the set of minimisers of ‖µ− αℓ‖2 on Rep(Q,vℓ).

Let Crit(f) ⊂ Rep(Q,v) be the set of all critical points of f . Given any critical point x, let
β = µ(x)− α and define

(2.25) Cβ := Crit(f) ∩ µ−1(β), CKv·β := Kv · Cβ.

For representations of quivers, an argument directly analogous to that of Atiyah and Bott [2] classifies
the critical sets in terms of Harder-Narasimhan type. In analogy with Atiyah and Bott’s calculations
for the Yang-Mills functional [2], we can inductively compute the equivariant cohomology of the critical
sets in terms of energy minimisers on the space of representations with smaller dimension vector.

Lemma 2.8. The Kv-equivariant cohomology of CK·β is

H∗
Kv

(CK·β) ∼=
n⊗

ℓ=1

H∗
Kvℓ

(µ−1(αℓ)).

Given an initial condition x0, define φ(x0, t) to be the solution to the downwards gradient flow
equation for the energy function ‖µ− α‖2

(2.26) d

dt
φ(x0, t) = −Iρϕ(x0,t)(µ(φ(x0, t))− α), φ(x0, 0) = x0.

For each initial condition x0, there exists a unique minimal T ∈ [−∞, 0) such that the solution
φ(x0, t) exists for all t ∈ (T,∞) and converges to a unique critical point as t → ∞. If T is finite
then limt→T+ f(φ(x0, t)) =∞. The results of [29] classify the isomorphism classes of solutions which
converge to a critical point as t→ −∞.

For each t such that a solution of (2.26) exists, there is a solution gt ∈ Gv of the equation

(2.27) dgt
dt

g−1
t = −i(µ(gt · x0)− α)
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which satisfies φ(x0, t) = gt · x0. In particular, the gradient flow preserves any subset Z ⊂ Rep(Q,v)

preserved by the action of Gv. If the subset Z is closed then the limit of the flow is also contained in
Z. Therefore we can define the gradient flow and its limit on any closed subset preserved by the action
of Gv, even if this subset is singular and the usual definition of the gradient vector field in terms of
derivatives does not make sense.

Definition 2.9. Let Z ⊂ Rep(Q,v) be a closed subset preserved by Gv and define f : Z → R by
f(x) = ‖µ(x) − α‖2. A critical point of f is a stationary point for the gradient flow (2.26). The
unstable set of x is

(2.28) W−
x :=

{
y ∈ Z | lim

t→−∞
φ(y, t) = x

}
.

Given a critical set CK·β, the unstable bundle is

(2.29) W−
K·β :=

{
y ∈ Z | lim

t→−∞
φ(y, t) ∈ CK·β

}
and the stable set or Morse stratum is denoted

(2.30) W+
K·β :=

{
y ∈ Z | lim

t→∞
φ(y, t) ∈ CK·β

}
.

2.3.1. The negative slice associated to the critical set. Let x be a critical point of ‖µ − α‖2, and let
β = µ(x)− α. Since Iρx(β) = 0 then eiβt · x = x for all t ∈ R and so there is an induced action of the
one-parameter subgroup {eiβt | t ∈ R} ⊂ Gv on the tangent space TxRep(Q,v).

Definition 2.10. Let Z ⊂ Rep(Q,v) be a closed subset preserved by Gv and define f : Z → R by
f(x) = ‖µ(x)− α‖2. Let x be a critical point of f with β = µ(x)− α. The local slice at x is

Sx :=
{
δx ∈ TxRep(Q,v) | δx ∈ ker(ρCx )

∗ andx+ δx ∈ Z
}
.

The negative slice at x is

(2.31) S−
x :=

{
δx ∈ Sx | lim

t→∞
eiβt · δx = 0

}
.

Given a critical set CK·β as in (2.25), consider the trivial bundle CK·β × Rep(Q,v) → CK·β. By
identifying the fibre over x with TxRep(Q,v) ∼= Rep(Q,v), define the negative slice bundle

(2.32) S−
K·β :=

{
(x, δx) ∈ CK·β × Rep(Q,v) | δx ∈ S−

x

}
together with the projection p : S−

K·β → CK·β.

Since the infinitesimal action ρCx is Kv-equivariant and the metric (2.18) and inner product (2.20)
are both Kv-invariant, then the adjoint (ρCx )

∗ is also Kv-equivariant. More explicitly, the action is
given by

Adk((ρ
C
x )

∗(δx)) = (ρCk·x)
∗(k · δx).

In particular, each k ∈ Kv defines an isomorphism Sx
∼= Sk·x given by δx 7→ k · δx. Since the moment

map is Kv-equivariant then limt→∞ eiµ(x)t · δx = 0 if and only if limt→∞ eiµ(k·x) · (k · δx) = 0, and
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therefore this isomorphism restricts from the slice Sx to the negative slice S−
x

∼=−→ S−
k·x, which defines

an action of Kv on S−
K·β.

We can describe the points in the negative slice more explicitly as follows. Let x be a critical point
with µ(x) = β, which implies that the representation is a direct sum of subrepresentations x =

⊕
ℓ xℓ

with dimension vector vℓ, where each subspace Vect(Q,vℓ) ↪→ Vect(Q,v) is an eigenspace for the
action of β and the eigenvalue is determined by slopeα(Q,vℓ). In the following we use the convention
that the subspaces are ordered by increasing α-slope, i.e. `1 < `2 if and only if slopeα(Q,vℓ1) <

slopeα(Q,vℓ2). The condition limt→∞ eiβt · δx = 0 then implies that δx is contained in the subspace

δx ∈
⊕
ℓ1<ℓ2

Hom1(Q,vℓ2 ,vℓ1) ⊂ Hom1(Q,v,v) = Rep(Q,v).

The point of introducing the negative slice is that one can explicitly describe the pair (S−
K·β, S

−
K·β \

CK·β), however for the purposes of Morse theory the natural object of study is the pair (W−
K·β,W

−
K·β \

CK·β) (see [30] and Theorem 4.1 in this paper). The following theorem is one of the main results of
[29] and shows that the topology of the negative slice is the same as that of the unstable set, and
therefore we can reduce the study of flow lines inside the unstable set to the study of certain explicit
subspaces of the negative slice (cf. Section 2.6).

Theorem 2.11. Let Z ⊂ Rep(Q,v) be a closed subset preserved by Gv and define f : Z → R by
f(x) = ‖µ(x)−α‖2. Then for each critical set CK·β there exists a neighbourhood U of CK·β in W−

K·β,
a neighbourhood V of CK·β × {0} in S−

K·β and a Kv-equivariant homeomorphism of pairs

(2.33) Hβ : (U,U \ CK·β)
∼=−→ (V, V \ (CK·β × {0})).

2.4. Critical sets and the negative slice for framed quivers. In this section we consider a quiver
Q with vertices I and edges E, and let v = (vk)k∈I a dimension vector such that one vertex (which we
label ∞) has dimension 1. Define I′ = I \ {∞} to be the set of remaining vertices of Q.

Definition 2.12. For such a quiver Q and dimension vector v = (vk)k∈I, the canonical central element
α(Q,v) := (αk)k∈I is given by

(2.34) αk :=

{
1 k ∈ I′

−
∑

j∈I′ vj k =∞

Given a dimension vector 0 ≤ v′ = (v′k)k∈I ≤ v with v′∞ = 1, the induced central element α′ from
(2.23) is α′ = (iα′

k · idV ′
k
)k∈I, where

(2.35) α′
k =

(
1 +

∑
k∈I′ vk

1 +
∑

k∈I′ v
′
k

)
αk for each k ∈ I.

If v′∞ = 0 then the induced central element α′ is zero.

Remark 2.13. Note that any subrepresentation containing the vertex ∞ must have negative slope
and any subrepresentation that does not contain the vertex ∞ must have positive slope. Therefore,
when constructing the Harder-Narasimhan filtration (cf. [24]) with respect to this stability parameter,
we see that
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(1) the maximal α-semistable subrepresentation is the largest subrepresentation that does not
contain the vertex ∞,

(2) the quotient by the maximal semistable subrepresentation is an α-stable representation, for
which every subrepresentation must contain the vertex ∞, and

(3) the Harder-Narasimhan filtration of an α-unstable representation is a two step filtration. We
will denote the type of this filtration by the dimension vector of the quotient by the maximal
semistable subrepresentation.

(4) A construction of Crawley-Boevey [9] shows that the moduli space of stable representations
of any framed quiver is homeomorphic to the unframed moduli space Mα(Q,v) as defined in
(2.22) for a quiver which has an extra vertex of dimension 1, and therefore fits into the above
construction. Via this correspondence, the central element of Definition 2.12 determines the
same stability condition as for the hyperkähler quiver varieties [17] and the handsaw quiver
varieties [22] studied by Nakajima.

With respect to the canonical central element α from Definition 2.12, [29, Prop. 3.13] shows that
any critical point x splits as a direct sum of two representations x = x1 ⊕ x2 with corresponding
dimension vectors v1, v2 with moment maps µ(x1) given by (2.35) and µ(x2) = 0. Therefore the
vector labelling the critical set (described in (2.24)) is (v1,v2) = (v1,v− v1) and so, with respect to
this stability parameter, the critical sets are labelled by the vector v1.

Given such a critical point x on a closed Gv-invariant subset Z ⊂ Rep(Q,v), the negative slice from
(2.31) becomes

(2.36) S−
x =

{
δx ∈ Hom1(Q,v2,v1) ∩ ker(ρCx )

∗ | x+ δx ∈ Z
}
.

Now let R be a finite set of relations on the quiver and consider the case where Z is the subset
Rep(Q,v,R) = ν−1(0) ⊂ Rep(Q,v) as defined in [29, Sec. 3]. Since x = x1 ⊕ x2 ∈ Rep(Q,v1,R) ⊕
Rep(Q,v2,R) and S−

x ⊂ Hom1(Q,v2,v1), then [29, Lem. 3.29] states that

(2.37) S−
x = Hom1(Q,v2,v1) ∩ ker(ρCx )

∗ ∩ ker dνx.

At each critical point we have the following deformation complex

(2.38) Hom0(Q,v2,v1)
ρCx
−−→ Hom1(Q,v2,v1)

dνx
−−→ Rel(Q,v2,v1,R).

Define the cohomology groups H0(Q,v2,v1) := ker ρCx , H1(Q,v2,v1,R) := ker(ρCx )
∗ ∩ ker dνx and

H2(Q,v2,v1,R) := ker(dνx)
∗ at each term of the complex and define

hp(Q,v2,v1,R) := dimCHp(Q,v2,v1,R)

for each p = 0, 1, 2. From (2.37) we have

(2.39) S−
x = H1(Q,v2,v1,R).
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Definition 2.14. The index of the complex (2.38) can be written in terms of the Ringel form of (2.5),
and is denoted as follows

〈v2,v1〉R := dimCHom0(Q,v2,v1)− dimCHom1(Q,v2,v1) + dimCRel(Q,v2,v1,R)

= 〈v2,v1〉+ dimCRel(Q,v2,v1,R).
(2.40)

The following lemma allows us to compute the dimension of the negative slice in terms of the index
of the complex and the dimension of the second cohomology group of the deformation complex.

Lemma 2.15.

(2.41) dimC S−
x = h2(Q,v2,v1,R)− 〈v2,v1〉R .

Proof. A homomorphism in ker ρCx ⊂ Hom0(Q,v2,v1) is necessarily zero since it maps a semistable
representation into a stable representation of smaller slope (cf. [24, Lem. 2.3]), and therefore h0 = 0.
Since S−

x = H1(Q,v2,v1,R), then the result follows from the index formula

〈v2,v1〉R = h0 − h1 + h2 ⇔ h1 = h2 + h0 − 〈v2,v1〉R . □

From now on we drop the notation for the dimension vector v from Kv since the meaning will be
clear from the context. Given a critical set CK·β, each critical point x is a direct sum x1 ⊕ x2, which
determines a direct sum Vect(Q,v) ∼= Vect(Q,v1) ⊕ Vect(Q,v2) of the vector spaces at each vertex
according to the eigenvalues of β = µ(x)− α. Define the following bundles over CK·β.

Hom0(Q,v2,v1) =
{
(x, u) ∈ CK·β ×Hom0(Q,v,v) | u ∈ Hom0(Q,v2,v1)

}
Hom1(Q,v2,v1) =

{
(x, δx) ∈ CK·β × Rep(Q,v) | δx ∈ Hom1(Q,v2,v1)

}
.

Since the moment map is K-equivariant, then so is this decomposition, and so there is an induced
action of K on these bundles. The complex (2.38) extends to a complex of bundle homomorphisms
and (2.39) shows that S−

K·β is the middle cohomology of this complex.
We conclude this section with a result on the relative equivariant cohomology of the negative slice

which is a singular space analog of the results of Atiyah & Bott [2, Sec. 13] and Kirwan [12, Sec. 4.23]
for the critical sets and negative eigenbundle of the Hessian.

Let Kβ be the isotropy group of β ∈ k∗ with respect to the coadjoint action. The critical set CK·β

has the structure of a fibre product CK·β ∼= Cβ ×Kβ
K (cf. [12, Sec. 4.22]). In particular, we have

H∗
K(CK·β) ∼= H∗

Kβ
(Cβ).

Let S−
β be the pullback of S−

K·β by the inclusion Cβ ↪→ CK·β. Then S−
K·β and S−

K·β \CK·β also have
a fibre product structure S−

K·β
∼= S−

β ×Kβ
K and S−

K·β \CK·β ∼= (S−
β \Cβ)×Kβ

K, and so we have the
following commutative diagram

(2.42) H∗
K(S−

K·β, S
−
K·β \ CK·β) //

∼=
��

H∗
K(S−

K·β)
∼= H∗

K(CK·β)

∼=
��

H∗
Kβ

(S−
β , S

−
β \ Cβ) // H∗

Kβ
(S−

β )
∼= H∗

Kβ
(Cβ)
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The motivation for this is explained in the next section, where the main theorem of Morse theory
shows that the question of studying the terms in the spectral sequence for the Morse stratification
by the norm square of the moment map reduces to studying the relative cohomology groups for the
pair (W−

K·β,W
−
K·β \ CK·β). The above results show that this is equivalent to studying the relative

cohomology groups of the pair (S−
β , S

−
β \Cβ) in Kβ-equivariant cohomology, which is simpler because

the negative slice is a linearised version of the unstable set which can be studied explicitly.

2.5. Reduction to the first component of the critical set. In this section we restrict to the
case where the relations in the quiver are determined by paths of the same length, and therefore the
relation map ν is a homogeneous polynomial. In this case we can prove that the relative equivariant
cohomology groups of the previous section simplify, which will be more convenient for constructing
the cup product and differentials on the Morse complex. This restriction is not too severe, as the class
of quivers with homogeneous relations includes important examples such as Nakajima quivers and the
handsaw quivers studied in [22].

Definition 2.16. A relation is homogeneous if it is defined by paths of the same length. A homogeneous
set of relations is a set R in which every relation is homogeneous.

Remark 2.17. The above definition of a homogeneous set of relations only requires that the paths
defining each relation have the same length. Two different relations in a homogeneous set may have
different lengths.

If a relation r is homogeneous then the algebraic map νr : Rep(Q,v) → Hom(Vt(r), Vh(r)) (cf.
[29, (3.1)]) is defined by a homogeneous polynomial in the components

⊕
a∈EHom(Vt(a), Vh(a)) of the

representation.

Recall from [29, Prop. 3.13] that Cβ = Cβ1 × Cβ2 , where Cβ1/Kβ1 = M(Q,v1) and Cβ2 = µ−1(0)

on Rep(Q,v2). Define S−
β1

to be the restriction of the negative slice to the subset Cβ1 × {0} ⊂ Cβ. In
this section we show that when the quiver has homogeneous relations, the relative cohomology groups
H∗

Kβ
(S−

β , S
−
β \ Cβ) and H∗

Kβ
(S−

β1
, S−

β1
\ Cβ1) are isomorphic (cf. Corollary 2.20 below). Therefore, in

defining the differentials and cup product in Section 5, it is sufficient to restrict attention to the subset
Cβ1 × {0} ⊂ Cβ1 × Cβ2 = Cβ on which the computations are much simpler.

Lemma 2.18. If the relations are homogeneous then the map x 7→ tx for t ∈ [0, 1] defines a K-
equivariant deformation retract of ν−1(0) and µ−1(0) ∩ ν−1(0) to the zero representation.

Proof. Since ν =
⊕

r∈R νr is a direct sum of homogeneous polynomials then ν−1(0) is preserved by
the map x 7→ tx. Similarly, the components of µ are homogeneous polynomials of order 2 (cf. (2.21)),
and so µ−1(0) is also preserved by x 7→ tx. □

Corollary 2.19.

(2.43) H∗
Kβ

(S−
β )
∼= H∗

Kβ
(Cβ) ∼= H∗

Kβ
(Cβ1)

∼= H∗
Kβ

(S−
β1
).
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Moreover, since Kβ1 acts on Cβ1 with isotropy group the diagonal U(1) ⊂ Kβ1 then we have

H∗
Kβ

(C−
β1
) ∼= H∗(M(Q,v1))⊗H∗(BU(1))⊗H∗(BKβ2).

For small values of ε > 0, the action of the one-parameter subgroup {eitβ} defines a Kβ-equivariant
homotopy equivalence S−

β1
\ Cβ1

∼= S−
β ∩ f−1(c− ε).

For any t ∈ C∗, there is a Kβ-equivariant isomorphism of the middle cohomology of the complex
(2.38) over the critical points x = (x1, x2) and xt = (x1, tx2). Therefore, for any neighbourhood U of
S−
β1
∩f−1(c−ε) in S−

β ∩f
−1(c−ε), we can define a Kβ-equivariant deformation retract of S−

β ∩f
−1(c−ε)

onto U .
Since S−

β , S−
β1

and f−1(c − ε) are all real analytic, then [23, Thm. 1.1] shows that there is a
neighbourhood U of S−

β1
∩ f−1(c− ε) in S−

β ∩ f
−1(c− ε) and a Kβ-equivariant deformation retract of

U onto S−
β1
∩ f−1(c− ε).

Combining the above two deformation retracts gives us an isomorphism

(2.44) H∗
Kβ

(S−
β \ Cβ) ∼= H∗

Kβ
(S−

β ∩ f−1(c− ε)) ∼= H∗
Kβ

(S−
β1
∩ f−1(c− ε)) ∼= H∗

Kβ
(S−

β1
\ Cβ1)

The isomorphisms (2.43) and (2.44) together with the five lemma gives us the following result.

Corollary 2.20. For any quiver with homogeneous relations, we have

(2.45) H∗
Kβ

(S−
β , S

−
β \ Cβ) ∼= H∗

Kβ
(S−

β1
, S−

β1
\ Cβ1).

2.6. Spaces of flow lines between critical points. Throughout this section we will consider the
space of flow lines between two given critical sets. The flow is the negative gradient flow φ(x, t)

defined in (2.26). The lower critical set will always be denoted Cℓ (with Harder-Narasimhan type vℓ;
cf. Remark 2.13) and the upper critical set by Cu (with type vu).

Definition 2.21. Given two critical sets Cℓ and Cu with f(Cℓ) < f(Cu), the space of representations
that flow up to Cu and down to Cℓ is

F
u,0
ℓ,0 :=

{
x ∈ Z | lim

t→∞
φ(x, t) ∈ Cℓ, lim

t→−∞
φ(x, t) ∈ Cu

}
.

The flow defines an R action on F̃u
ℓ and the space of flow lines is

F̃
u,0
ℓ,0 := F

u,0
ℓ,0 /R.

The main technical result of [29] is that any representation x such that limt→−∞ φ(x, t) ∈ Cu

is isomorphic to a representation in the negative slice of Cu [29, Thm. 4.22]. On restricting to
a neighbourhood of the critical set, this determines a homeomorphism of pairs H : (Wu,Wu,0)

∼=→
(S−

u , S
−
u,0) (cf. [29, Cor. 4.24]) and via this homeomorphism we can consider the space of flow lines as

a subset of the negative slice bundle H(Fu,0
ℓ,0 ) ⊂ Su,0 in a neighbourhood of the critical set.

The condition x ∈ F
u,0
ℓ,0 provides two algebraic restrictions on the representation x. The first is that

the type of the Harder-Narasimhan filtration is determined by the critical set Cℓ, since the graded
object of this filtration is isomorphic to that of the limit of the downwards flow. The limit of the
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upwards flow determines a second condition, which is that the representation x must admit a different
filtration, this time with increasing slopes and graded object determined by the the type of Cu, since
x is isomorphic to a representation in the negative slice of Cu (cf. [29, Lem. 3.24]).

2.6.1. The image of the space of flow lines in the negative slice. By definition, the space of flow lines
is contained in the unstable set F

u,0
ℓ,0 ⊂ Wu,0. Via the homeomorphism H : (Wu,Wu,0)

∼=→ (Su, Su,0),
we can study the image H(Fu,0

ℓ,0 ) ⊂ Su,0, which turns out to be a more tractable object that we can
describe explicitly and then transport back to the unstable set via the homeomorphism H−1. In this
section we do exactly that for the case where the stability parameter is the canonical central element
of Definition 2.12.

In this case the lower critical point xℓ ∈ Cℓ decomposes as

(2.46) xℓ = x
(1)
ℓ + x

(2)
ℓ , x

(1)
ℓ ∈ Rep(Q,vℓ), x

(2)
ℓ ∈ Rep(Q,v − vℓ).

Note that slopeα(Q,vℓ) < slopeα(Q,v− vℓ). Moreover, x(2)ℓ is isomorphic to the graded object of the
Jordan-Hölder filtration of the maximal semistable subrepresentation of x and x

(1)
ℓ is isomorphic to

the quotient of x by its maximal semistable subrepresentation.
Similarly, the upper critical point xu ∈ Cu decomposes as

(2.47) xu = x(1)u + x(2)u , x(1)u ∈ Rep(Q,v1 − d), x
(2)
ℓ ∈ Rep(Q,v − v1 + d).

Again we have slopeα(Q,vℓ − d) < slopeα(Q,v − vℓ + d) and that x
(1)
u is stable, however this time

x
(1)
u is isomorphic to a stable subrepresentation of x, instead of a quotient representation. Since the

two critical points are connected by a flow line, then [29, Lem. 4.32] shows that x(1)u is isomorphic to a
subrepresentation of x(1)ℓ . In particular, this implies that d > 0. This is summarised in the following
lemma.

Lemma 2.22. A flow line connecting xℓ and xu determines a reduction of structure group from Kv

to Kvℓ−d × Kd × Kv−vℓ
for which x

(1)
ℓ ∈ Rep(Q,vℓ) and x

(1)
u ∈ Rep(Q,vℓ − d). The polystable

representation x
(2)
u ∈ Rep(Q,v − vℓ + d) then splits into subrepresentations

(2.48) x(2)u = x(2,1)u + x(2,2)u ∈ Rep(Q,d)⊕ Rep(Q,v − vℓ).

The homeomorphism H from the unstable set to the negative slice maps the representation x to
δx ∈ Su,0.

Using Corollary 2.20, from now on we restrict to the case where x
(2)
ℓ = 0. This condition imposes

the following restriction on x ∈ F
u,0
ℓ,0 .

Lemma 2.23. If x
(2)
ℓ = 0, then x is isomorphic to x

(1)
ℓ , which is then stable as a representation in

Rep(Q,vℓ).

Proof. Using Theorem [29, Thm. 4.22], the representation x is isomorphic to a representation in S−
xu

for some xu = x
(1)
u + x

(2)
u ∈ Cu.
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Since x flows down to xℓ, then the Harder-Narasimhan type is determined, therefore the quotient by
the maximal semistable subrepresentation, which we denote x

(1)
ℓ = x/x

(2)
ℓ must have dimension vector

vℓ. Moreover, [29, Thm. 1.2] (the algebraic structure of the limit of the upwards flow) shows that x(1)u

is a stable subrepresentation of x which contains the vertex∞, and so it must be a subrepresentation of
x
(1)
ℓ . The representation x

(2)
u satisfies µ(x

(2)
u ) = 0 by [29, Prop. 3.13] and therefore x

(2)
u is semisimple.

With respect to these subrepresentations, the negative slice decomposes as

S−
u ⊂ Hom1(Q,v − vℓ + d,vℓ − d) ∼= Hom1(Q,d,vℓ − d)⊕Hom1(Q,v − vℓ,vℓ − d).

With respect to this decomposition, write δx = δx1 + δx2 and x
(2)
u = x

(2,d)
u + x

(2,vℓ−d)
u . Therefore,

x is isomorphic to xu + δx1 + δx2 and x
(1)
u + δx1 + x

(2,d)
u is the quotient by the maximal semistable

subrepresentation. The choice of stability parameter then implies that x(1)u + δx1+x
(2,d)
u is stable (see

Remark 2.13), and therefore it is isomorphic to x
(1)
ℓ . Therefore

x ∼= x(1)u + δx1 + x(2,d)u + δx2 + x(2,vℓ−d)
u = x

(1)
ℓ + δx2 + x(2,vℓ−d)

u .

Since δx2 ∈ S−
u ⊂ Hom1(Q,v−vℓ,vℓ−d), then [29, Lem. 3.26] shows that if δx2 6= 0, then x

(1)
ℓ +δx2

is isomorphic to a non-zero element of the negative slice Sℓ,0 of the lower critical point, and therefore
cannot flow down to xℓ since the energy satisfies ‖µ(x(1)ℓ +δx2)−α‖2 < ‖µ(xℓ)−α‖2. Therefore we must
have δx2 = 0. The condition x

(2)
ℓ = 0 implies that x

(2,vℓ−d)
u , and so x ∼= x

(1)
u + δx1 + x

(2,d)
u
∼= x

(1)
ℓ . □

This setup can be represented by the following diagram. The notation Qvℓ
means the quiver Q

with dimension vector vℓ, an arrow from Qvd
to Qvℓ−d

represents a homomorphism in the space
Hom1(Q,vd,vℓ−d), a special case of which is a loop from Qvℓ

to itself which corresponds to a repre-
sentation in Rep(Q,vℓ). At the upper and lower critical points, the arrows have been labelled with
the corresponding subrepresentations from (2.46) and (2.47).

xu •Qvℓ−d
•Qv−vℓ+d

x •Qvℓ−d
•Qd

•Qv−vℓ

xℓ •Qvℓ
•Qv−vℓ

x
(1)
u x

(2)
u

x
(1)
u x

(2,d)
u

δx1

x
(2,vℓ−d)
u

δx2=0

x
(1)
ℓ x

(2)
ℓ =0

Corollary 2.24. After applying the reduction of structure group from Kv to Kvℓ−d ×Kd ×Kv−vℓ
,

the image H(Fu,0
ℓ,0 ) ⊂ S−

u,0 is contained in the subspace S−
u,0 ∩Hom1(Q,d,vℓ − d).
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2.6.2. Adjacent critical sets. Corollary 2.24 shows that the image of the flow lines H(Fu,0
ℓ,0 ) ⊂ S−

u,0 is
contained in a given subspace of the negative slice that can be described in terms of the algebraic
data (Harder-Narasimhan type) of the upper and lower critical sets. In general, the image may not be
equal to this subspace, due to the possible existence of flow lines that converge to some intermediate
critical set.

In this section we consider the special case where there are no intermediate critical sets, and so the
image H(Fu,0

ℓ,0 ) ⊂ Su,0 is equal to the subspace identified in Corollary 2.24. We can then explicitly
describe a tubular neighbourhood of H(Fu,0

ℓ,0 ) ⊂ Su,0 as a disk bundle over H(Fu,0
ℓ,0 ).

Definition 2.25. Two critical sets Cℓ and Cu with corresponding Harder-Narasimhan types vu and
vℓ are called adjacent iff vℓ = vu + ek for some k ∈ I.

In the notation of Corollary 2.24, this is equivalent to d = ek. Once again we can decompose
xℓ = x

(1)
ℓ + x

(2)
ℓ ∈ Cℓ, xu = x

(1)
u + x

(2)
u ∈ Cu and note that (for the purposes of computing the relative

cohomology groups (2.45)) Corollary 2.20 allows us to restrict attention to the case where x
(2)
ℓ = 0

and x
(2)
u = 0.

Since x
(2)
u = 0 and x

(1)
u is α-stable, then the isotropy group of xu is U(1) × Kv−vu , which then

acts on the negative slice S−
xu

. Recall that the diagonal U(1) ⊂ Kv acts trivially on all of Rep(Q,v),
and therefore the action of the isotropy group on the slice is induced from the action of Kv−vu on
Hom1(Q,v − vu,vu).

Lemma 2.26. If Cℓ and Cu are adjacent critical sets, then for every xu = x
(1)
u +x

(2)
u ∈ Cu with x

(2)
u = 0

and every representation δx ∈ Su,0 ⊂ Hom1(Q,v−vu,vu) such that kernel of δx has dimension vector
v − vu − ek = v − vℓ, the limit of the downwards flow with initial condition xu + δx is contained in
Cℓ. Conversely, every element of the negative slice which flows down to xℓ = x

(1)
ℓ + x

(2)
ℓ ∈ Cℓ with

x
(2)
ℓ = 0 must have this form.

Proof. By the choice of stability parameter, the stability of x
(1)
u ∈ Rep(Q,vu) and the fact that

x
(2)
u = 0 imply that the maximal semistable subrepresentation of xu + δx has dimension vector equal

to the kernel of δx. Therefore xu + δx flows down to xℓ ∈ Cℓ if and only if the dimension vector of
the kernel of δx is equal to v − vu − ek = v − vℓ. □

If Cℓ and Cu are adjacent critical sets then Lemma 2.22 shows that there is a reduction of structure
group to Kvu × U(1)×Kv−vℓ

. Modulo this reduction, there is an explicit description of the space of
flow lines as a subspace of the negative slice of the upper critical set.

Corollary 2.27. Let Cℓ and Cu be adjacent critical sets and restrict to the subset of upper critical points
of the form xu = x

(1)
u +x

(2)
u ∈ Cu with x

(2)
u = 0 and lower critical points of the form xℓ = x

(1)
ℓ +x

(2)
ℓ ∈ Cℓ

with x
(2)
ℓ = 0. Then modulo the reduction of structure group to Kvu ×U(1)×Kv−vℓ

, the space of flow
lines F

u,0
ℓ,0 fibres over Cu such that the fibre over xu ∈ Cu is isomorphic to V \ {0}, where V is the
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cokernel of

(2.49) Hom0(Q, ek,vu) Hom1(Q, ek,vu).
ρCxu

Moreover, the subgroup U(1) ⊂ Kvu × U(1)×Kv−vℓ
acts freely on these fibres with weight one.

Proof. This follows from Lemma 2.26 and the explicit description of Lemma 2.22. □

Therefore we can describe tubular neighbourhoods of the space of flow lines as follows.

Lemma 2.28. Given two adjacent critical sets Cℓ and Cu with Harder-Narasimhan types satisfying
vℓ = vu + ek, the fibres of the tubular neighbourhood of H(Fu,0

ℓ,0 ) ⊂ Su,0 at a given δx ∈ H(Fu,0
ℓ,0 ) are

isomorphic to the cokernel of

(2.50)
Hom0(Q,v − vu − ek,vu) Hom1(Q,v − vu − ek,vu)

Hom0(Q,v − vu − ek, ek)

ρCxu⊕
ρCδx

which is a direct summand of the negative slice at xu.

Proof. The negative slice of the upper critical point xu corresponds to the cokernel of

Hom0(Q,v − vu,vu)
ρCxu
−−−−→ Hom1(Q,v − vu,vu).

Within this slice, Lemma 2.26 shows that the space of flow lines to Cℓ is the Grassmann submanifold
of all representations δx ∈ Hom1(Q,v−vu,vu) for which the kernel has dimension vector v−vu−ek.
This space corresponds to fixing a reduction of structure group of the isotropy group Kv−vu of xu to
the subgroup Kv−vu−ek ×Kek so that δx ∈ Hom1(Q, ek,vu).

Given a fixed choice of reduction of structure group, the fibres of the normal bundle correspond to
the cokernel of

Hom0(Q,v − vu − ek,vu) Hom1(Q,v − vu − ek,vu),
ρCxu

and varying this choice requires finding the normal bundle of

Kv−vu ×(Kv−vu−ek
×Kek

) Hom
1(Q, ek,vu) ⊂ S−

xu
.

which corresponds to the cokernel of (2.50), consisting of all representations orthogonal to the tangent
space of above fibre product. □

Applying the homeomorphism H : (Wu,Wu,0)
∼=→ (Su, Su,0) then determines a tubular neighbour-

hood Uℓ → F
u,0
ℓ,0 ⊂Wu,0, which is homeomorphic to a disk bundle.

Now the lower critical point (which is isomorphic to x = xu + δx by Lemma 2.23) lies inside the
associated Harder-Narasimhan stratum, which also has a tubular neighbourhood inside the total space
Rep(Q,v) whose fibres are given by the cokernel of the following complex

Hom0(Q,vℓ,v − vℓ) Hom1(Q,vℓ,v − vℓ).
ρCxℓ
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With respect to the reduction of structure group from Kv to Kvu ×Kek ×Kv−vu−ek , this complex
splits

(2.51)
Hom0(Q,v − vℓ,vu) Hom1(Q,v − vℓ,vu)

Hom0(Q,v − vℓ, ek) Hom1(Q,v − vℓ, ek)

ρCxu⊕ ⊕
ρCδx

Note that since xℓ is isomorphic to x = xu + δx by Lemma 2.23, then the image of ρCxℓ
is orthogonal

to Hom1(Q,v − vℓ, ek). Therefore, since vℓ = vu + ek, then the above complex contains (2.50) as a
direct summand.

Since F
u,0
ℓ,0 is also contained in the Harder-Narasimhan stratum of the critical set Cℓ, one can then

consider a tubular neighbourhood of the stratum and restrict it to a disk bundle π : Nℓ → F
u,0
ℓ,0 . Given

x ∈ F
u,0
ℓ,0 , the fibre π−1(x) corresponds to a neighbourhood of the origin in the cokernel of

(2.52) Hom0(Q,v − vℓ,vℓ) Hom1(Q,v − vℓ,vℓ).
ρCx

Therefore we have two disk bundles over F
u,0
ℓ,0 .

(1) A tubular neighbourhood D → F
u,0
ℓ,0 inside the unstable set W−

Cu
with fibres given by the

cokernel of (2.50), and
(2) a tubular neighbourhood of the Harder-Narasimhan stratum of Cℓ inside the ambient manifold

Rep(Q,v), which restricts to a disk bundle V → F
u,0
ℓ,0 with fibres given by the cokernel of (2.51).

In the following we will abuse the notation by referring to the disk bundle and the associated vector
bundle with the same notation. The direct sum decomposition of (2.51) shows that D is a subbundle
of V . This is summarised in the following proposition.

Proposition 2.29. The Harder-Narasimhan stratum of Cℓ has a tubular neighbourhood, which restricts
to a disk bundle V over F

u,0
ℓ,0 with fibres given by the cokernel of (2.51). The space of flow lines F

u,0
ℓ,0 has

a tubular neighbourhood D in W−
Cu

, for which the fibres are given by the cokernel of (2.50). Moreover,
after shrinking the above neighbourhoods if necessary, the bundle D is a subbundle of V .

After reducing the structure group from Kv to Kvℓ−ek×Kek×Kv−vℓ
(cf. Lemma 2.22), the quotient

bundle T := V/D is trivial with fibres Hom1(Q,v − vℓ, ek).

2.6.3. The equivariant Euler class of the quotient of the tubular neighbourhoods. The above proposition
shows that the tubular neighbourhood of the lower stratum restricts to a disk bundle V → F

u,0
ℓ,0 , which

contains the normal bundle D → F
u,0
ℓ,0 inside the unstable set W−

Cu
as a subbundle. We would now

like to compute the equivariant Euler class of the quotient bundle, which will then be used in the
construction of the differential and cup product on the Morse complex in Section 6.2.

After applying the reduction of structure group from Kv to Kvu × Kek × Kv−vu−ek (cf. Lemma
2.22), there is a trivial bundle T over F

u,0
ℓ,0 with fibres given by Hom1(Q,v − vℓ, ek). Since the fibres
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of V are given by the cokernel of (2.51) and the fibres of D are given by the cokernel of (2.50), which
appears as a direct summand in (2.51), then V ∼= D ⊕ T .

For the construction of the differential and cup product in Section 6, we need to compute the
equivariant Euler class of the bundle T . The following lemma applies in this setting (cf. [3]).

Lemma 2.30. Let X be a connected topological space and π : E → X a trivial complex vector bundle
of rank n with a Hermitian metric on the fibres. Suppose that a compact Lie group K acts fibrewise
on E via a faithful representation ρ : K → U(n), so that K fixes the zero section X ↪→ E and acts on
each fibre π−1(x) by k · v = ρ(k)v. Then the K-equivariant Euler class of E is

eK = 1⊗ ρ∗(cn) ∈ H∗
K(X) ∼= H∗(X)⊗H∗(BK),

where 1 represents the identity element in H0(X) ∼= C, the projection BK → BU(n) induces ρ∗ :

H∗(BU(n)) → H∗(BK) and cn is the degree 2n generator of the polynomial ring C[c1, . . . , cn] ∼=
H∗(BU(n)).

Now we can apply this result to the tubular neighbourhood of Proposition 2.29.

Corollary 2.31. In the setting of Proposition 2.29, the disk V → Fu
ℓ contains the tubular neigh-

bourhood D → F
u,0
ℓ,0 as a subbundle, with trivial quotient bundle T . With respect to the reduction of

structure group from Kv to Kvu ×Kek ×Kv−vu−ek, the subgroup Kek ×Kv−vu−ek = Kek ×Kv−vℓ

acts on the fibres Hom1(Q,v−vℓ, ek) of the quotient bundle T via a faithful representation ρ, and the
equivariant Euler class is eK = ρ∗(cn), where n = dimCHom1(Q,v − vℓ, ek) and cn is the degree 2n

generator of the polynomial ring C[c1, . . . , cn] ∼= H∗(BU(n)).

This will be used in Section 6, where the Euler class of the quotient bundle T is needed to compensate
for the failure of transversality when constructing the differentials and cup product on the Morse
complex (cf. (6.5) and (6.6)).

3. Reduction of structure group and restricted quiver representations

The results of Section 9 use an embedding of the Hecke correspondence into the negative slice bundle
on an ambient smooth manifold (cf. Corollary 9.2), or equivalently (by [29]) an embedding of a space
of flow lines between adjacent critical sets. In order to describe the Thom class of this embedding, it
is necessary to develop the deformation theory associated to this problem, which is the goal of this
section (cf. Lemmas 3.5 and 3.12). Much of the theory works in more generality than the case of
Nakajima quivers, and the majority of this section is taken up with the task of defining some general
conditions on the quiver and the relations for which this theory works and then illustrating this with
examples. The reader who is only interested in Nakajima quiver varieties can skip to the next section.

First we describe a general construction to reduce the structure group of a quiver representation by
decomposing the vector spaces at each vertex and then eliminating some edges from the new quiver
representation. Some examples of this are: handsaw quivers (cf. [22] and Example 3.7), the fixed
points of a circle action on the moduli space (cf. [21], [10] and Example 3.8) and the quiver associated
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to the negative slice (cf. Example 3.11 below). The goal here is to prove Lemma 3.5 and Lemma
3.12, which are general results showing that certain properties of the original representation and the
derivative of the relation map are preserved after reducing the structure group in this way.

The following constructions are needed to prove these results for a general class of quivers. Through-
out the reader is referred to Examples 3.7 and 3.8 which illustrate this theory.

Given a quiver Q = (I,E), consider a finite set of vertices I′ with a surjective map v : I′ → I.
There is an induced set of edges Ẽ′ constructed as follows. For each a ∈ E and each ti ∈ v−1(t(a)),
hj ∈ v−1(h(a)), define an edge aij ∈ Ẽ′ such that t(aij) = t(a) and h(aij) = h(a). Note that the
construction determines a surjective map e : Ẽ′ → E. This data defines a new quiver Q̃′ := (I′, Ẽ′),
which we call an expansion of Q.

Given a dimension vector v for Q, together with vector spaces {Vk}k∈I, decompose each Vk
∼=

Vk1 ⊕ · · · ⊕ Vkmk
where mk = #(v−1(k)) and each Vki has positive dimension. Note that this last

condition bounds the number of vertices in v−1(k); in particular if dimC Vk = 1 then #(v−1(k)) = 1.
This data defines a dimension vector v′ for the quiver Q̃′. The group Kv′ acting on Rep(Q,v′) is a
reduction of structure group of the original action of Kv on Rep(Q,v).

A representation x′ ∈ Rep(Q̃′,v′) then induces a representation x ∈ Rep(Q,v) by using the direct
sum Vk

∼= Vk1 ⊕ · · · ⊕ Vkmk
, and the converse is true since the edge set Ẽ′ includes every possible edge

aij mapping to each a ∈ E. Therefore there is an isomorphism

(3.1) Rep(Q̃′,v′)
∼=−→ Rep(Q,v)

as well as an inclusion of the Lie algebra of the structure group Hom0(Q̃′,v′) ↪→ Hom0(Q,v).
Now choose a subset E′ ⊂ Ẽ′ and define a new quiver Q′ = (I′,E′), which we call a restriction of Q̃′.

Given a dimension vector v′ as above, there is an isomorphism Hom0(Q′,v′)
∼=−→ Hom0(Q̃′,v′) and an

injective homomorphism

(3.2) S : Rep(Q′,v′) ↪→ Rep(Q̃′,v′) ∼= Rep(Q,v).

A set of relations R for the original quiver Q then induces a set of relations R′ for Q′. We will need
a precise description of this for Lemma 3.5, and so the details of this process are as follows.

For each path p = an · · · a1 in the original quiver Q, there is a collection P̃′ of paths in an expansion
Q̃′ given by pi1,...,in = a

(in)
n · · · a(i1)1 along edges a

(ik)
k ∈ e−1(ak) for each k = 1, . . . , n. Note that a

restriction Q′ has a subset of paths P′ ⊂ P̃′ given by taking only considering paths with edges in
E′ ⊂ Ẽ′ and so P̃′ \P′ consists of all paths with at least one edge in Ẽ′ \E′. We abuse the notation and
use e to denote both of the projections e : P′ → P and e : P̃′ → P.

Therefore the relations R for Q determine a new set of relations R̃′ for Q̃′ given as follows. For each
relation

r =
∑

p∈Pt(r),h(r)

λpp ∈ R
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with head and tail h(r), t(r) ∈ I and for each choice of h(r′) ∈ v−1(h(r)) and t(r′) ∈ v−1(t(r)) there is
a relation r′ defined by

r′ =
∑

p′∈P̃′
t(r′),h(r′)

λv(p′)p
′.

Define R̃′ to be the set of all such relations. For a restriction Q′, we consider the subset R′ ⊂ R̃′ of
relations for which all of the paths are in the subset of edges E′ ⊂ Ẽ′. Equivalently, we construct R′

by removing paths from R̃′, where a path appearing nontrivially in some relation r′ ∈ R̃′ is removed
if and only if it contains at least one edge in Ẽ′ \ E′. This construction is illustrated in Examples 3.7
and 3.8.

Given a representation x′ ∈ Rep(Q′,v′,R′) mapping to x = S(x′) ∈ Rep(Q,v,R) as above, a
subrepresentation of x′ then induces a subrepresentation of x. Note that the converse is not necessarily
true, since a subrepresentation for x may not be compatible with the decomposition of each Vk

∼=
Vk1 ⊕ · · · ⊕ Vkmk

.
A stability parameter α for Rep(Q,v) induces a parameter α′ for Rep(Q,v′) by pullback α′ = α◦v.

Note that if a vertex ∞ ∈ I has dimension one with respect to v, then v−1(∞) consists of a single
vertex which has dimension one with respect to v′, therefore the canonical stability parameter for
(Q,v) from Definition 2.12 induces a canonical stability parameter for (Q′,v′).

In particular, if x′ ∈ Rep(Q′,v′) induces a stable representation x = S(x′) ∈ Rep(Q,v)α−st, then
every subrepresentation of x must contain the vertex ∞. Since any subrepresentation of x′ induces
a subrepresentation of x then each subrepresentation of x′ must also contain the vertex v−1(∞), and
therefore x′ is then α′-stable. Therefore we have shown the following

Lemma 3.1. If α is the stability parameter for (Q,v) from Definition 2.12 and α′ the induced stability
parameter on (Q′,v′), then S(x′) ∈ Rep(Q,v,R)α−st implies that x′ ∈ Rep(Q,v′,R′)α

′−st.

The proof of Lemma 3.5 requires an extra condition on a restriction of quivers, namely that a path
is removed if and only if it contains at least two edges in Ẽ′ \ E′.

Definition 3.2. Let Q′ = (I′,E′) be a restriction of an expansion of Q = (I,E) and R a set of quadratic
relations. Then the induced set of relations R′ is called fully restricted if and only if for each relation
r =

∑
p∈P λpp ∈ R and each path p′ ∈ P̃′ \ P′ such that λv(p′) 6= 0, there are at least two edges in p′

contained in Ẽ′ \ E′.

Remark 3.3. The point of the above definition is to restrict the possible homomorphisms in the image
of the derivative of the relation map (2.9). If a relation in r′ ∈ R′ corresponds to a homomorphism
Vt(r′) → Vh(r′) then a fully restricted set of relations implies that dνx(δx) must be zero if δx is a sum
of homomorphisms along edges in Ẽ′ \ E′. This is used in the proof of Lemma 3.5 below.

Since the relations R′ are induced from R then there is an induced homomorphism of representations

(3.3) S : Rep(Q′,v′,R′) ↪→ Rep(Q̃′,v′, R̃′) ∼= Rep(Q,v,R)
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given by (3.2) and the same is true for the spaces Hom0, Hom1 and Rel. Moreover, since the induced
map of relations is injective, then there is a surjective splitting homomorphism

Rel(Q′,v′,v′,R′) Rel(Q̃′,v′,v′, R̃′)
q

for which ker(q) consists of all homomorphisms Hom(Vt(r′), Vh(r′)) ⊂ Rel(Q̃′,v′,v′, R̃′) such that r′ ∈
R̃′ \ R′.

Then the deformation complexes (2.10) for (Q̃′, R̃′) and (Q′,R′) are related by

(3.4)
Hom0(Q̃′,v′,v′) Hom1(Q̃′,v′,v′) Rel(Q̃′,v′,v′, R̃′)

Hom0(Q′,v′,v′) Hom1(Q′,v′,v′) Rel(Q′,v′,v′,R′)

ρC
S(x′) dνS(x′)

q

ρC
x′ dνx′

Remark 3.4. Since the group Kv contains the one parameter subgroup of scalar multiples of the iden-
tity which act trivially on Rep(Q,v), then x ∈ Rep(Q,v)α−st only implies that ρCx : Hom0(Q,v,v)→
Hom1(Q,v,v) is injective on the trace-free part of Hom0(Q,v,v). Similarly, given a set R of relations,
the map dνx : Hom1(Q,v,v,R) can only be surjective onto the trace free part (which is only nontrivial
if there are relations r ∈ R with t(r) = h(r)). This is sufficient for the standard deformation theory
to prove smoothness of the moduli space. To emphasise this, we will denote the trace-free part by

Hom0
0(Q,v,v) ⊂ Hom0(Q,v,v) and Rel0(Q,v,v,R) ⊂ Rel(Q,v,v,R).

Lemma 3.5. Suppose that Q′ is defined via expansion and restriction of Q as above, that the relations
R′ are fully restricted and that x = S(x′) ∈ Rep(Q,v,R) is induced from x′ ∈ Rep(Q′,v′,R′). Suppose
that dνx : Hom1(Q,v,v)→ Rel0(Q,v,v,R) is surjective. Then

dνx′ : Hom1(Q′,v′,v′)→ Rel0(Q,v′,v′,R′)

is also surjective.

Proof. If dνx is surjective, then so is the same map for the expanded quiver dνx : Hom1(Q̃′,v′,v′)→
Rel0(Q̃

′,v′,v′, R̃′), and so q ◦ dνx is surjective.
There are canonical splittings so that

Hom1(Q̃′,v′,v′) ∼= Hom1(Q′,v′,v′)⊕Hom1(Q̃′,v′,v′)/Hom1(Q′,v′,v′),

where the quotient consists of all tangent vectors δx ∈ Hom(Vt(a), Vh(a)) ⊂ Hom1(Q̃′,v′,v′) for edges
a ∈ Ẽ′ \ E′.

The condition that the relations R′ are fully restricted means that all such tangent vectors are in
the kernel of q ◦ dνS(x′). Therefore the image of dνx′ is equal to the image of the composition

Hom1(Q′,v′,v′) Hom1(Q̃′,v′,v′) Rel0(Q̃
′,v′,v′, R̃′) Rel0(Q

′,v′,v′,R′).
dνS(x′) q

and so surjectivity of q and dνS(x′) implies surjectivity of dνx′ . □
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Corollary 3.6. Let Q be a quiver with dimension vector v, and suppose that dνx : Hom1(Q,v,v)→
Rel0(Q,v,v,R) is surjective for all x ∈ Rep(Q,v)α−st. Then if Q′ is defined via expansion and
restriction of Q and the relations R′ are fully restricted, then the moduli space Mα′(Q′,v,R′) is
smooth.

Proof. Lemma 3.1 shows that if x′ ∈ Rep(Q′,v′) is stable then S(x′) is stable and therefore dνx′ is
surjective by Lemma 3.5. The result follows from the standard deformation theory applied to the
complex

Hom0(Q′,v′,v′) Hom1(Q′,v′,v′) Rel0(Q
′,v′,v′,R′).

ρC
x′ dνx′ □

The main example of interest is that of fully restricted expansions of Nakajima quiver varieties.
Recall that for a Nakajima quiver variety, the hyperkähler structure induces a duality on the defor-
mation complex (2.10) such that ρCx is injective if and only if dνx is surjective (cf. [10], [19, Lem.
3.10]). In particular, if x is a stable representation then ρCx is injective, and so the moduli space of
stable representations is smooth (cf. [19, Cor. 3.12]). The Lemmas 3.1 and 3.5 show that a represen-
tation x′ ∈ Rep(Q′,v,R′) of a fully restricted expansion of a Nakajima quiver variety corresponds to
a smooth point in the moduli space if it induces a stable representation x = S(x′) ∈ Rep(Q,v,R) for
the original Nakajima quiver.

The following examples illustrate all of the above constructions.

Example 3.7 (Handsaw quivers from the ADHM quiver). Consider the ADHM quiver with a given
dimension vector

•V

B1

��

B2

��

b

��
•W

a

UU

For notation, let k denote the vertex with vector space V and ` denote the vertex with vector space
W . Define I′ = {k1, . . . , kn−1, `1, . . . , `n} with v : I′ → I defined by v(ki) = k and v(`i) = `. Now
decompose V ∼= V1 ⊕ · · · ⊕ Vn−1 and W1 ⊕ · · · ⊕Wn. From the full set of all possible edges, choose a
subset E′ so that

• B1 decomposes into components Bk
1 : Vk → Vk+1 for k = 1, . . . , n− 2,

• B2 decomposes into components Bk
2 : Vk → Vk for k = 1, . . . , n,

• a decomposes into components ak : Wk → Vk for k = 1, . . . , n− 1, and
• b decomposes into components bk : Vk−1 →Wk for k = 2, . . . , n.

Then the above ADHM quiver expands into the handsaw quiver (2.12) and the relations (2.11) de-
compose into the relations (2.13) for the handsaw quiver.
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•V1

B1
1 //

b2

""D
DD

DD
DD

DD
DD

D

B1
2

��
•V2

B2
1 //

b3

!!C
CC

CC
CC

CC
CC

C

B2
2

��
· · ·

Bn−2
1 //

bn−1

""E
EE

EE
EE

EE
EE

EE
•Vn−1

bn

##F
FF

FF
FF

FF
FF

F

Bn−1
2

��

•W1

a1

OO

•W2

a2

OO

· · · •Wn−1

an−1

OO

•Wn

Note that there is one handsaw relation Vk → Vk+1 for each k = 1, . . . , n − 2 (cf. (2.13)). In the
original ADHM quiver with V ∼= V1 ⊕ · · · ⊕ Vn−1 and W1 ⊕ · · · ⊕Wn, there are many paths with a
nontrival ADHM relation that map Vk → Vk+1 (for example B1 : Vk → Vℓ followed by B2 : Vℓ → Vk+1

for ` 6= k+ 1), however we see that the only such paths for which all edges are in the handsaw quiver
are those that appear in the handsaw relations.

Moreover, the handsaw relations (2.13) are a full restriction of the ADHM relations, since all the
paths in the relations for the expanded ADHM quiver that do not appear in the handsaw relations
must contain two edges that are not in the set of handsaw quiver edges E′.

Example 3.8 (Fixed points of the circle action for Nakajima quivers). Recall that for a Nakajima
quiver Q with decomposition of edges denoted E = E0,1 ∪ E0,1, there is a well-studied circle action (cf.
[21], [10]) on the space of representations

eiθ · ((xa, xā))a∈E0,1 =
(
(xa, e

iθxā)
)
a∈E0,1

.

This action commutes with the action of Gv and therefore descends to the moduli space. If an
equivalence class [x] is fixed by the circle action, then the representation Vect(Q,v) decomposes into
weight spaces, which are ordered Vect(Q,v1) ⊕ · · · ⊕ Vect(Q,vn). In this way we see that the fixed
point determines an expansion of the quiver.

To simplify the notation in line with the previous example, we write B2 ∈ Rep(Q,v)0,1 for the
sum of all homomorphisms corresponding to edges a ∈ E0,1 and B1 ∈ Rep(Q,v)1,0 for the sum of all
homomorphisms corresponding to edges in a ∈ E0,1. Then the fixed point condition (cf. [10] and [21])
implies that B1 decomposes into the sum of Bj

1 ∈ Rep(Q,vj)
1,0 and B2 decomposes into the sum of

Bj
2 ∈ Hom1(Q,vj,vj+1)

0,1. This is represented by the diagram below, where for simplicity a single
edge is used to denote each representation Bj

1 ∈ Rep(Q,vj)
1,0 and Bj

2 ∈ Hom1(Q,vj,vj+1)
0,1.

•(Q,v1)

B1
1 //

B1
2

��
•(Q,v2)

B2
1 //

B2
2

��
· · ·

Bn−2
1 // •(Q,vn)

Bn−1
2

��

Therefore we see that the fixed point also determines a restriction of the above expansion. The
relations are then a full restriction of those for the original hyperkähler quiver for the same reason as
the previous example.

We would also like to apply the above theory to the negative slice, which will be used in Corollary 9.2
to describe the Thom class of the normal bundle to the Hecke correspondence inside a certain projective
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bundle. Example 3.11 shows that the negative slice can be written as a space of representations for a
restricted quiver, however the restriction does not satisfy the conditions of Lemma 3.5. If the quiver
has no loops then it is quite easy to recover the result of Lemma 3.5, and if the quiver does have loops
then we need to add an extra condition which is as follows.

Definition 3.9. Given a set R of quadratic relations, for each loop a ∈ E such that t(a) = h(a) = t(r)

for some relation r and for all paths p = ba with λp(r) 6= 0 there is a unique loop a′ ∈ E such that
t(a′) = h(a′) = h(r) and a path p′ = a′b such that λp′(r) 6= 0.

Remark 3.10. This is a general condition which is satisfied in useful examples. For the ADHM
quiver, since (with the notation of Example 3.7) the relation

r = B1B2 −B2B1 + ab

contains two loops B1, B2. We have t(B1) = t(r) and there is a path p = B2B1 with λp(r) = −1 6= 0.
There is a unique loop (which in this case is B1 again) such that h(B1) = h(r) and a path p′ = B1B2

such that λp′(r) = 1 6= 0. The same idea applies to the loop B2.
Similarly, for the handsaw quiver, each loop Bk

2 is at the tail of a relation

rk = Bk
1B

k
2 −Bk+1

2 Bk
1 + ak+1bk+1

for k = 1, . . . , n − 2. Let p = Bk
1B

k
2 be the path with Bk

2 at the tail, and note that there is a unique
loop Bk+1

2 such that p′ = −Bk+1
2 Bk

1 with λp′(rk) = −1 6= 0.

Example 3.11 (The negative slice as a restricted quiver). Given a framed quiver Q with dimension
vector v, consider a reduction of structure group corresponding to v = v1 + v2 with the following
restriction

•(Q,v1)

x

��
•(Q,v2)

y
uu

with x ∈ Rep(Q,v1) and y ∈ Hom1(Q,v2,v1), where a single arrow is used to denote the represen-
tations x and y in order to simplify the above diagram. When y ∈ ker(ρCx )

∗ is nonzero, then these
representations appear in the negative slice (2.36). If y /∈ ker(ρCx )

∗, then [29, Lem. 3.26] shows that
there exists g ∈ Gv so that g · y so is in the negative slice.

The relation map ν : Rep(Q,v)→ Rel(Q,v,v,R) decomposes into

ν1 ⊕ ν2 : Rep(Q,v1)⊕Hom1(Q,v2,v1)→ Rel(Q,v1,v1,R)⊕ Rel(Q,v2,v1,R),

where ν1 is the restriction of ν to Rep(Q,v1). To define ν2, first note that since y is nilpotent, then
each path p = an · · · a1 is mapped to the homomorphism

Rep(Q,v1)⊕Hom1(Q,v2,v1)→ Rel(Q,v2,v1,R)

(x, y) 7→ (x, y)p := xan · · ·xa2ya1 .
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Equivalently, let p′ = an · · · a2 be the truncated path obtained by removing a1 from p and note that
(x, y)p = xp′ya1 . Given (δx, δy) ∈ Hom1(Q,v1,v1) ⊕ Hom1(Q,v2,v1), the derivative (2.6) of each
path is

dp(x,y)(δx, δy) = dp′x(δx)ya1 + xp′(δy)a1 .

Now define

ν2(x, y) =
⊕
r∈R

∑
p∈Pt(r),h(r)

λp(r) (x, y)p

and

(dν2)(x,y)(δx, δy) =
⊕
r∈R

∑
p∈Pt(r),h(r)

λp(r) dp(x,y)(δx, δy)

=
⊕
r∈R

∑
p∈Pt(r),h(r)

λp(r) dp
′
x(δx)ya1 +

⊕
r∈R

∑
p∈Pt(r),h(r)

λp(r)xp′(δy)a1

=: (dν2)y(δx) + (dν2)x(δy),

(3.5)

where the above is used as the definition of (dν2)y(δx) and (dν2)x(δy). Now the derivative of the
relation map is

(dν1 ⊕ dν2)(x,y) : Hom(Q,v1,v1)⊕Hom1(Q,v2,v1)→ Rel(Q,v1,v1,R)⊕ Rel(Q,v2,v1,R)

(δx, δy) 7→ ((dν1)x(δx), (dν2)y(δx) + (dν2)x(δy)) .
(3.6)

This particular example and the notation for the derivative of ν will be used in Section 9. We would
like to apply the deformation theory of Lemma 3.5 to this negative slice quiver and hence the Hecke
correspondence, however unfortunately the negative slice quiver is not a full restriction of the original
quiver Q, since a deformation in Hom1(Q̃′,v1 + v2,v1 + v2) of the form

(3.7) •(Q,v1)

δx1

��

δz

33 •(Q,v2)

δy
uu

δx2

��

may contain relations with paths whose derivative has terms such as y(δz) and y(δx2) which both
contain exactly one edge in Ẽ′ \E′. The next lemma shows that the first type of path is not an obstacle
towards proving that dν(x+y) is surjective, and the second type of path can be dealt with using the
condition of Definition 3.9.

Lemma 3.12. Let Q = (E, I) be a framed quiver with relations R and canonical stability parameter
given by Definition 2.12. Suppose that for any dimension vector v we have x stable implies dνx is
surjective.
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Choose a dimension vector v and vertex k ∈ I, and consider the restricted quiver associated to a
reduction of structure group given by the negative slice quiver

•(Q,v)

x

��
•(Q,ek)

y
uu

with x ∈ Rep(Q,v)α−st and suppose that y ∈ S−
x is nonzero. Then dν ′(x+y) is surjective onto

Rel0(Q,v1,v1,R)⊕ Rel(Q,v2,v1,R).

Proof. Since x is stable and y ∈ S−
x then the negative gradient flow (2.26) takes x+ y down to a lower

critical point for ‖µ−α‖2 on Rep(Q,v+ek,R) [29]. Since x is at the lowest non-minimal critical level
for ‖µ−α‖2 in Rep(Q,v+ ek,R), then this lower critical point must be a minimiser for ‖µ−α‖2 and
therefore x+ y is stable. In particular, this implies that

(3.8) Hom1(Q̃′,v + ek,v + ek) Rel0(Q̃
′,v + ek,v + ek, R̃

′)
dν(x+y)

is surjective for the unrestricted quiver Q̃′. To complete the proof we need to show that this implies
that the induced homomorphism

(3.9) Hom1(Q′,v,v)⊕Hom1(Q′, ek,v) Rel0(Q
′,v,v,R′)⊕ Rel(Q′, ek,v,R

′)
dν′

(x+y)

from (3.4) is surjective.
With reference to the notation for the deformations from (3.7), first note that dνx(δx1) defines a

surjective map onto the first component Rel0(Q
′,v,v,R′), since x is stable. Therefore dν ′(δx1) also

defines a surjective map. Equivalently, this shows that the term dνy(δz) from the relations on Q̃′ does
not affect the surjectivity of dν ′ onto the first component.

The second component of dν ′(x+y) mapping into Rep(Q′, ek,v,R
′) is (dνy)(δx1) + (dνx)(δy) from

(3.5). If there are no loops at vertex k ∈ I then the deformation δx2 in (3.7) is zero, and so the second
component of dν ′(x+y) is induced from the larger quiver and therefore surjective.

If there is a loop at vertex k ∈ I with scalar δx2 ∈ C, then Definition 3.9 implies that any relations
of the form y(δx2) ∈ Rel(Q̃′, ek,v1, R̃

′) can be cancelled by choosing δx′1 =
λp(r)
λp′ (r)

δx2 · id in the corre-
sponding relation (δx′1)y appearing in Rel(Q′, ek,v1,R

′), which exists and is unique by the condition
in Definition 3.9. This can be done for each loop, and therefore surjectivity of dν(x+y) in (3.8) implies
surjectivity of dν ′(x+y) in (3.9), which completes the proof. □

Corollary 3.13. With the same conditions as Lemma 3.12, the moduli space associated to the negative
slice quiver is smooth.

Proof. Lemma 3.12 shows that dν ′(x+y) is surjective, after which smoothness follows from the standard
deformation theory of the moduli space using the same method as Corollary 3.6. □
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4. The Morse spectral sequence

In this section we recall some basic facts about the differentials and cup product on the spectral
sequence associated to a Morse filtration of a topological space.

4.1. Morse stratification. Given a topological space M and a filtration ∅ = M−1 ⊂ M0 ⊂ · · · ⊂
Mn = M , one can write down a spectral sequence where the terms on the first page are

Ep,q
1 = Hp(Mq−p,Mq−p−1).

The goal is then to compute the terms Ep,q
∞ which correspond to the graded cohomology of M . When

M is a manifold, then the Morse-theoretic point of view is to use a smooth function f : M → R
satisfying certain conditions (which we make precise below) to derive a Morse filtration of M and
carry out the spectral sequence calculations by analysing the behaviour of f near the critical points.

Suppose that for all x ∈M the negative gradient flow of f with initial condition x, denoted ϕt(x), is
defined for all t ∈ [0,∞) and that limt→∞ ϕt(x) exists. For example, the Lojasiewicz inequality method
[15], [25] shows that this is true when the function is analytic and the flow satisfies a compactness
condition, which is true for the norm-square of a moment map on an affine variety (cf. [26, Lem.
4.10]). In this case one can construct a filtration ∅ = M−1 ⊂ M0 ⊂ · · · ⊂ Mn = M determined by
connected components of the set of critical points of f .

If the function also has good properties near the critical sets (e.g. it is Morse, Morse-Bott [5] or
minimally degenerate [12]) then for each critical set Cj labelled by j = 1, . . . , n, there is a negative
normal bundle Vj → Cj whose fibres correspond to the negative eigenspace of the Hessian at each
critical point. Let Vj,0 = Vj \ Cj and let λj := rankR Vj be the index. The main theorem of Morse
theory shows that the terms on the first page of the spectral sequence can be written in terms of
relative cohomology groups localised around the critical sets

H∗(Mj ,Mj−1) ∼= H∗(Vj , Vj,0),

and the Thom isomorphism shows that these relative cohomology groups can be expressed in terms
of Morse data (the critical set together with the Morse index)

H∗(Vj , Vj,0) ∼= H∗−λj (Cj).

One then has to compute the differentials in the spectral sequence. If the gradient flow of the
function has further good properties in the sense that the stable and unstable manifolds intersect
transversely (e.g. the function is Morse-Smale or Morse-Bott-Smale) then one can express these
differentials in terms of pullback/pushforward homomorphisms on spaces of flow lines, which is worked
out in detail in [4] using de Rham cohomology.

Therefore, if the function is sufficiently well-behaved, then Morse theory determines
(1) a canonical Morse filtration (which requires good compactness properties of the flow),
(2) the terms on the first page of the spectral sequence in terms of critical point data (which

requires good behaviour of the function near the critical sets), and
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(3) the differentials of the spectral sequence in terms of flow line data (which requires a transver-
sality condition).

More generally, one can replace the manifold M by a (possibly singular) subset Z preserved by the
flow ϕ in the sense that if the initial condition x0 ∈ Z, then ϕt(x0) ∈ Z for all t such that ϕt(x0) is
defined. Under some additional conditions, which are explained in detail in [30] and which we recall
below, there is still a Morse filtration ∅ = Z−1 ⊂ Z0 ⊂ · · · ⊂ Zn = Z and the terms on the first page
of the spectral sequence can still be written in terms of relative cohomology groups localised around
the critical sets.

Let M be real analytic, let f : M → R and let ϕt(x) denote the time t downwards gradient flow of
f with initial condition x ∈ M . Let Z be a subset preserved by the gradient flow of f in the sense
that x ∈ Z implies that ϕt(x) ∈ Z for all t such that ϕt(x) exists. We can then define a critical point
to be a fixed point of the flow. As above, label the critical sets by Cj for j = 0, . . . , n and define

W−
j :=

{
x ∈ Z | lim

t→−∞
ϕt(x) ∈ Cj

}
, W−

j,0 := W−
j \ Cj .

The main result of [30] is that the following analog of the main theorem of Morse theory holds for
f : Z → R if certain conditions are satisfied.

Theorem 4.1 ([30, Thm. 1.1 & 1.3]). If the pair (Z ⊂ M,f : M → R) satisfies Conditions (1)–(5)
of [30], then there is a Morse filtration ∅ = Z−1 ⊂ Z0 ⊂ · · · ⊂ Zn = Z and for any real numbers a < b

the following is true.
• If there are no critical values in [a, b] then Zb ' Za.
• If a and b are not critical values and there is one critical value c ∈ (a, b) with associated critical

set Cj, then Zj ' Zj−1 ∪W−
j .

Moreover, if K is a compact Lie group acting on Z and f is K-invariant, then the above homotopy
equivalences can be chosen to be K-equivariant.

Applying excision gives us the following isomorphism in K-equivariant cohomology

(4.1) H∗
K(Zj , Zj−1) ∼= H∗

K(W−
j ,W−

j,0).

Therefore the terms on the first page of the spectral sequence for the filtration ∅ = Z−1 ⊂ Z0 ⊂
· · · ⊂ Zn = Z can be expressed in terms of relative cohomology groups defined in terms of local data
around the critical sets.

The results of [30] also show that the above theorem is valid for the norm square of a moment
map on an affine variety (see also [28] for a more streamlined proof). In particular, we can apply this
theorem in the general setting of representations of a quiver with a finite set of relations.

4.2. A Thom homomorphism. Now consider the case where the function f : M → R on the
ambient manifold M is minimally degenerate in the sense of Kirwan [12] and Conditions (1)–(5) of
[30] are satisfied for the restriction of f to Z ⊂ M . The model example is where M is the space of
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representations of a quiver, f : M → R is the norm-square of a moment map as in Section 2.3 and Z

is the subvariety satisfying a finite set of relations on the quiver.
Since f is minimally degenerate on M , then the unstable set Vj of the critical set Cj is a vector

bundle. Let λj := rankR Vj . Then the Thom isomorphism shows that the terms on the first page
of the spectral sequence for M can be written as Hp

K(Mj ,Mj−1) ∼= H
p−λj

K (Cj) and these fit into the
following commutative diagram

(4.2)

Hp
K(Mj ,Mj−1) Hp

K(Mj)

Hp
K(Vj , Vj,0) HK(Vj)

H
p−λj

K (Cj) Hp
K(Cj)

Thm. 4.1∼= restriction

Thom∼= restriction

⌣e

where the isomorphism H
p−λj

K (Cj) ∼= H
p−λj

K (Vj)→ Hp
K(Vj , Vj,0) is given by pullback followed by cup

product with the Thom class τ ∈ H
λj

K (Vj , Vj,0).
Let i : Cj ∩Z ↪→ Cj denote the inclusion. In the following we will use Wj to denote the unstable set

of Cj ∩ Z of the restriction of f to Z and V Z
j := i∗Vj to denote the pullback of the negative normal

bundle from the ambient manifold M . The Euler class of the bundle V Z
j → Cj∩Z is denoted eZ = i∗e.

Note that Wj ⊂ V Z
j .

When we restrict to the subspace Z, the lower half of the above diagram becomes

Hp
K(Wj ,Wj,0) Hp

K(Wj)

Hp
K(V Z

j , V Z
j,0) Hp

K(V Z
j )

H
p−λj

K (Cj ∩ Z) Hp
K(Cj ∩ Z)

restriction ∼=

Thom ∼=

⌣eZ

∼=

Therefore, we see that cup product with the Euler class H
p−λj

K (Cj ∩ Z)
⌣eZ
−−−−→ Hp

K(Cj ∩ Z) factors
through the homomorphism H

p−λj

K (Cj ∩ Z)→ Hp
K(Wj ,Wj,0) in the sense that the following diagram

commutes.
Hp

K(Wj ,Wj,0) Hp
K(Wj)

H
p−λj

K (Cj ∩ Z) Hp
K(Cj ∩ Z)

⌣eZ

∼=

In particular, if the map H
p−λj

K (Cj ∩Z)
⌣eZ
−−−−→ Hp

K(Cj ∩Z) is injective, then so is the homomorphism
H

p−λj

K (Cj ∩ Z)→ Hp
K(Wj ,Wj,0).

The above construction is summarised in the following result.
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Lemma 4.2. Let π : V → B be a vector bundle with λ = rankR V , Euler class e ∈ Hλ
K(B) and Thom

class τ ∈ Hp
K(V, V \ B). Consider a subspace i : W ↪→ V such that K · i(W ) = i(W ) and the zero

section B ↪→ V lies in i(W ). Define V0 := V \B and W0 := W \B. Then there is a homomorphism

(4.3) Hp−λ
K (B)

i∗π∗(·)⌣i∗τ−−−−−−−→ Hp
K(W,W0)

Moreover, if Hp−λ
K (B)

⌣e−→ Hp
K(B) is injective, then so is the homomorphism (4.3).

Therefore restricting the diagram (4.2) to the subspace Z gives us the following diagram

Hp
K(Zj , Zj−1) Hp

K(Zj)

Hp
K(Wj ,Wj,0) HK(Wj)

H
p−λj

K (Cj ∩ Z) Hp
K(Cj ∩ Z)

Thm. 4.1∼= restriction

restriction∼=

⌣eZ

Lem. 4.2

from which we see that even though the terms on the first page of the spectral sequence for the
filtration ∅ ⊂ Z0 ⊂ · · · ⊂ Zn = Z may not be isomorphic to the terms H

p−λj

K (Cj ∩ Z), we still have a
homomorphism H

p−λj

K (Cj ∩Z)→ Hp
K(Zj , Zj−1). If Hp−λj

K (Cj ∩Z)
⌣eZ−→ Hp

K(Cj ∩Z) is injective, then
so is H

p−λj

K (Cj ∩ Z)→ Hp
K(Zj , Zj−1).

Finally, we have the following lemma which will be useful in Section 6.

Lemma 4.3. Let E ∼= E1 ⊕ E2 → B be a direct sum of vector bundles, and let

ν1 = rankE1, ν2 = rankE2, λ = ν1 + ν2 = rankE.

Then the following diagram commutes, where the homomorphism in the top row is induced by inclusion,
the left hand column is the Thom isomorphism for the bundle E → B, the middle column is the Thom
isomorphism for the bundle E → E1, the right hand column is the Thom isomorphism for E2 and the
bottom row is cup product with the Euler class of E1.

Hp(E,E0) Hp(E,E \ E1) Hp(E2, E2,0)

Hp−ν2(E1)

Hp−λ(B) Hp−ν2(B) Hp−ν2(B)

∼=Thom

∼=Thom

∼=
homotopy

∼=Thom

∼=homotopy

⌣e1 =

Proof. The proof follows from the Whitney sum formula for the Euler class e = e1 ⌣ e2 together with
the homotopy equivalences in the above diagram. □
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4.3. A splitting lemma. Consider the triple (Zj+1, Zj , Zj−1), let Cj+1 and Cj denote the associated
critical sets in Zj+1 \Zj and Zj \Zj−1, and let Fj+1,0

j,0 denote the space of flow lines between the lower
critical set Cj and the upper critical set Cj+1. The construction of the cup product in the sequel
depends on a choice of splittings for the long exact sequences of different triples (Zj+1, Zj , Zj−1),
(Wj+1,Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ) and (Wj+1,Wj+1,0, ∅). In this section we prove the following lemma
which shows that these choices can be made to be compatible, which will be used to show that the
different splittings used to define the cup product in Proposition 5.3 can be chosen to be compatible so
that the diagram (5.4) commutes. The lemma and its proof are elementary, however we were unable
to find the precise statement we need in the literature, therefore we include all the details here in
order to make the exposition self-contained.

Lemma 4.4. Consider the following commutative diagram of short exact sequences of abelian groups

0 A B C 0

0 A′ B′ C ′ 0

j

∼=

k

r t

j′ k′

and suppose that all groups are divisible abelian groups so that all short exact sequences split. Then
given a choice of splitting homomorphism i′ : C ′ → B′ there exists a splitting homomorphism i : C → B

such that r ◦ i = i′ ◦ t.

Proof. Choose a splitting homomorphism s : im r → B so that r ◦ s = id and note that r ◦ j = j′

implies that im j′ ⊂ im r, therefore s is defined on im j′.
First we claim that i′ ◦ t(c) ∈ im r for all c ∈ C. To see this, note that

k′ ◦ i′ ◦ t(c) = t(c) = t ◦ k(b) = k′ ◦ r(b) for some b ∈ B defined up to im j

⇒ i′ ◦ t(c)− r(b) ∈ ker k′ = im j′ = im r ◦ j

⇒ i′ ◦ t(c) = r(b+ j(a)) for some a ∈ A.

Therefore s ◦ i′ ◦ t is well-defined and we can construct a splitting homomorphism i := s ◦ i′ ◦ t :

C/ ker t→ B such that r ◦ i = i′ ◦ t. It now only remains to define i on ker t.
Choose any splitting homomorphism i′′ : C → B so that k ◦ i′′ = id. If c ∈ ker t, then we have

t ◦ k ◦ i′′(c) = 0

⇒ k′ ◦ r ◦ i′′(c) = 0

⇒ r ◦ i′′(c) ∈ ker k′ = im j′ = im r ◦ j.

Therefore there exists a ∈ A such that r(i′′(c)+j(a)) = 0 and the choice of a is unique since r◦j = j′ is
injective. Now define i : ker t→ ker r by i(c) := i′′(c)+j(a) ∈ ker r, which trivially satisfies r◦i = i′◦t.
It is easy to check that i is a homomorphism. Together with i : C/ ker t→ B defined above, since C is
a divisible abelian group then this determines i : C → B satisfying the conditions of the lemma. □
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4.4. Differentials for the spectral sequence. Each differential on the first page of the spectral
sequence is the composition of the following two homomorphisms

(4.4) Hp(Zj , Zj−1) Hp(Zj) Hp+1(Zj+1, Zj),

d

where the first homomorphism comes from the long exact sequence of the pair (Zj , Zj−1) and the
second homomorphism is the connecting homomorphism from the long exact sequence of the pair
(Zj+1, Zj).

The construction of Section 4.2 shows that there are homomorphisms from the shifted cohomology
of the critical sets that fit into the following diagram

Hp(Zj , Zj−1) Hp(Zj) Hp+1(Zj+1, Zj)

Hp(Wj ,Wj,0) Hp+1(Wj+1,Wj+1,0)

Hp−λj (Cj) Hp−λj+1+1(Cj+1)

d

Thm. 4.1 ∼= Thm. 4.1 ∼=

Lem. 4.2 Lem. 4.2

It is then natural to ask the following questions.
(i) Does the differential d : Hp(Zj , Zj−1) → Hp+1(Zj+1, Zj) map the image of the left-hand

column of the above diagram Hp−λj (Cj) → Hp(Zj , Zj−1) to the image of the right-hand
column Hp−λj+1+1(Cj+1)→ Hp+1(Zj+1, Zj)?

(ii) If so, is it possible to construct an induced map Hp−λj (Cj)→ Hp−λj+1+1(Cj+1)?
(iii) If the answers to the above questions are positive, then does the induced map Hp−λj (Cj) →

Hp−λj+1+1(Cj+1) have any topological meaning?
For Morse-Bott-Smale functions on smooth spaces, the differential can be written in terms of pull-

back/pushforward homomorphisms involving spaces of flow lines (see for example [4]). The main
result of Section 8.1 is that one can do this for spaces of representations of quivers and that the
topological meaning of the induced map is that it can be expressed in terms of pullback/pushforward
homomorphisms via spaces of flow lines, or equivalently (using the results of [29]) via the Hecke
correspondence.

4.5. The cup product on the spectral sequence for adjacent strata. In this section we describe
the cup product on the E1 page of the spectral sequence induced from the cup product on the total
space of Z in the case where the differentials are all zero. This is purely algebraic and designed to
develop the basis for subsequent sections in which we will use the analytic results of [29] and Section
2.6 to show that

(i) Theorem 4.1 can be used to reduce the cup product homomorphism to cohomology groups
localised around critical sets and spaces of flow lines (Section 5.2), and
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(ii) a modified transversality condition can be used to show that the cup product homomorphism
can be constructed from pullback and pushforward homomorphisms between critical sets and
spaces of flow lines connecting them (Section 8.2).

Remark 4.5. For now we focus on the case of a cup product homomorphism between adjacent strata.
It is easy to generalise the results of this section to non-adjacent strata, but to generalise the results
of the later sections requires compactifying spaces of flow lines, which we defer to a subsequent paper.

• To simplify the exposition, for the remainder of this section we will assume that the filtration is
perfect, i.e. the long exact sequence for each pair (Zj , Zj−1) splits into short exact sequences,
or equivalently the differentials in the spectral sequence are all zero.
• For notation, cohomology groups are written H∗ with coefficients in a divisible abelian group

so that short exact sequences split, however all of the constructions work in the same way for
equivariant cohomology H∗

K with respect to a group K preserving each stratum Sj = Zj \Zj−1.

Given a triple (Z,Zj , Zj−1), perfection of the stratification shows that the following sequence is
exact

0 H∗(Z,Zj) H∗(Z,Zj−1) H∗(Zj , Zj−1) 0.

Given ω ∈ Hm(Z), there is an induced cup product homomorphism on the terms in the above exact
sequence, which can be represented as follows.

(4.5)
0 Hp(Z,Zj) Hp(Z,Zj−1) Hp(Zj , Zj−1) 0

0 Hp+m(Z,Zj) Hp+m(Z,Zj−1) Hp+m(Zj , Zj−1) 0

j

⌣ω

k

⌣ω ⌣ωj

j k

where ωj ∈ Hm(Zj) denotes the restriction of ω to Zj .
Using the assumption on the coefficients, the above exact sequences split, and so the cup product

induces a homomorphism

(4.6) Hp(Z,Zj)⊕Hp(Zj , Zj−1) Hp+m(Z,Zj)⊕Hp+m(Zj , Zj−1).
⌣ω

For the Morse-theoretic convolution of Section 8, we will focus attention on the off-diagonal component
of the above homomorphism, denoted by

(4.7) Hp(Zj , Zj−1) Hp+m(Z,Zj)
cω

which is constructed as follows. First note that in writing (4.6) we have implicitly chosen a splitting
of the exact sequences (4.5), in which there is an inclusion i : Hp(Zj , Zj−1)→ Hp(Z,Zj−1) such that
k ◦ i = id and a projection π : Hp+m(Z,Zj−1)→ Hp+m(Z,Zj) such that π ◦ j = id.

Let η ∈ Hp(Zj , Zj−1) and define ζ = i(η). Then ζ ⌣ ω ∈ Hp+m(Z,Zj−1) ∼= Hp+m(Z,Zj) ⊕
Hp+m(Zj , Zj−1) from which we then project to π(ζ ⌣ ω) ∈ Hp+m(Z,Zj).
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Lemma 4.6. With respect to the splitting homomorphisms i, π defined above, the cup product homo-
morphism (4.7) which is induced from cup product on the total space ⌣ ω : Hp(Z) → Hp+m(Z) is
given by

cω(η) = π(i(η) ⌣ ω).

Remark 4.7. If η ⌣ ωj = 0 ∈ Hp+m(Zj , Zj−1) then this is the cup product

Hp(Zj , Zj−1) ↪→ Hp(Z,Zj−1)
⌣ω−→ Hp+m(Z,Zj).

5. Using the main theorem to localise the differentials and cup product

The construction of the differentials and cup product in the previous section is valid for a filtration
∅ = Z−1 ⊂ Z0 ⊂ · · · ⊂ Zn = Z of a topological space Z. When the filtration is induced by a Morse
filtration on an ambient manifold M (cf. the assumptions of Theorem 4.1), then one can interpret
these homomorphisms in terms of local data around the critical sets and spaces of flow lines. The
conditions of [30] are sufficient to define a Morse filtration and prove the isomorphism from Theorem
4.1. The goal of this section is to show that these conditions are also sufficient to prove Propositions
5.1 and 5.3 describing the differentials and cup product in terms of local data around the critical sets.

5.1. Localising the differential around the critical sets and spaces of flow lines. Let cj , cj+1

denote the critical values associated to the critical sets Cj , Cj+1. For each stratum Zj+1, consider the
subspace Nj := Zj ∪Wj+1. Note that the flow induces homotopy equivalences Nj ' f−1(−∞, cj+1] '
Zj+1 and Nj \ Cj+1 ' f−1(−∞, cj ] ' Zj (this requires Conditions (1)–(3) of [30]; see [30, Prop.
2.4]). Applying these homotopy equivalences shows that the differential (corresponding to the top
row in the following diagram) can be constructed as the composition of the homomorphisms in the
second row of the following diagram. The vertical homomorphisms between the second and third rows
are induced by restriction to Wj+1, and Theorem 4.1 then shows that this induces an isomorphism
Hp+1(Nj , Nj \ Cj+1) ∼= Hp+1(Wj+1,Wj+1,0) in the right-hand column. Note that F

j+1
j is used to

denote the union of the space of points that flow up to Cj+1 and down to Cj with the upper and lower
critical sets, while F

j+1,0
j,0 is the subset that excludes the upper and lower critical sets.

Hp(Zj , Zj−1) Hp(Zj) Hp+1(Zj+1, Zj)

Hp(Nj \ Cj+1, Nj \ Fj+1
j ) Hp(Nj \ Cj+1) Hp+1(Nj , Nj \ Cj+1)

Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) Hp(Wj+1,0) Hp+1(Wj+1,Wj+1,0)

∼= ∼= ∼=

∼=

Therefore (up to the isomorphisms in the right-hand column of the above diagram), it follows from
Theorem 4.1 that the differential in the spectral sequence factors through the homomorphisms in the
bottom row, which can be expressed in terms of cohomology groups localised around the critical sets
and spaces of flow lines.
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Proposition 5.1. Let Z and f : Z → R satisfy Conditions (1)–(5) of [30], so that there is a
Morse filtration ∅ = Z−1 ⊂ Z0 ⊂ · · · ⊂ Zn = Z and Theorem 4.1 applies. Then the differential
Hp(Zj , Zj−1)

d−→ Hp+1(Zj+1, Zj) factors through the composition of the homomorphisms in the bottom
row of the following diagram.

(5.1)
Hp(Zj , Zj−1) Hp+1(Zj+1, Zj)

Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) Hp(Wj+1,0) Hp+1(Wj+1,Wj+1,0)

restriction

d

Thm. 4.1∼=

In Section 8.1 we will show that, in the presence of additional transversality assumptions, the above
construction can be further refined using spaces of flow lines in analogy with the well-known theory
for Morse-Bott-Smale functions on smooth manifolds (see for example [4, Sec. 3]).

5.2. Localising the cup product around the critical sets and spaces of flow lines. Using a
similar technique to the proof of Proposition 5.1 for the differential, we can use the main theorem
of Morse theory to express the cup product on the spectral sequence in terms of cohomology groups
localised around the critical sets and spaces of flow lines. The terms in the diagram (4.5) are isomorphic
to the corresponding terms in the following diagram.

0 Hp(Nj , Nj \ Cj+1) Hp(Nj , Nj \ Fj+1
j ) Hp(Nj \ Cj+1, Nj \ Fj+1

j ) 0

0 Hp+m(Nj , Nj \ Cj+1) Hp+m(Nj \ Cj+1, Nj \ Fj+1
j ) Hp+m(Nj \ Cj+1, Nj \ Fj+1

j ) 0

⌣ωj+1 ⌣ωj+1 ⌣ωj

In the above diagram and in the sequel we will abuse the notation and also use ωj , ωj+1 to denote
the restriction of ω to subspaces of Zj , Zj+1 respectively. Restricting all of the above spaces to
the intersection with Wj+1 determines homomorphisms from the terms in the above diagram to the
corresponding terms in the following diagram, which are defined using spaces localised around the
critical sets and spaces of flow lines.

(5.2)
0 Hp(Wj+1,Wj+1,0) Hp(Wj+1,Wj+1,0 \ Fj+1,0

j,0 ) Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) 0

0 Hp+m(Wj+1,Wj+1,0) Hp+m(Wj+1,Wj+1,0 \ Fj+1,0
j,0 ) Hp+m(Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ) 0

j

⌣ωj+1

k

⌣ωj+1 ⌣ωj

j k

The horizontal rows in the diagram above are the long exact sequences of the cohomology of the
triple (Wj+1,Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ). Using the assumption on the coefficients, there are splitting
homomorphisms

i : Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 )→ Hp(Wj+1,Wj+1,0 \ Fj+1,0

j,0 )

and π : Hp+m(Wj+1,Wj+1,0 \ Fj+1,0
j,0 )→ Hp+m(Wj+1,Wj+1,0)
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such that the cup product ⌣ ω : Hp(Wj+1,Wj+1,0 \Fj+1,0
j,0 )→ Hp+m(Wj+1,Wj+1,0 \Fj+1,0

j,0 ) induces a
homomorphism

Hp(Wj+1,Wj+1,0)⊕Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 )

⌣ωj+1−→ Hp+m(Wj+1,Wj+1,0)⊕Hp+m(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ).

Then the off-diagonal component

(5.3) Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) Hp+m(Wj+1,Wj+1,0)

cω

of the cup product can be written in terms of the splitting homomorphisms as follows.

Lemma 5.2. Given ω ∈ Hm(Z), η ∈ Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) and splitting homomorphisms as

defined above, the cup product ⌣ ω : H∗(Z)→ H∗(Z) induces a homomorphism (5.3) given by

cω(η) = π(i(η) ⌣ ωj+1).

All of the homomorphisms in the diagrams (4.5) and (5.2) are either induced by restriction to a
subspace, or by cup product with a fixed class ω ∈ Hm(Z) or its restriction to a subspace. Therefore
these homomorphisms commute with restriction, and so the following diagram, which is induced by
the inclusion of triples (Wj+1,Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ) ↪→ (Zj+1, Zj , Zj−1), commutes. Equivalently,
the cup product process of Lemma 5.2 is natural with respect to restriction of triples.

(5.4)
Hp(Zj+1, Zj−1) Hp(Zj , Zj−1) 0

0 Hp+m(Zj+1, Zj) Hp+m(Zj+1, Zj−1)

Hp(Wj+1,Wj+1,0 \ Fj+1,0
j,0 ) Hp(Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ) 0

0 Hp+m(Wj+1,Wj+1,0) Hp+m(Wj+1,Wj+1,0 \ Fj+1,0
j,0 )

⌣ωj+1

Thm. 4.1∼=

⌣ωj+1

Lemma 4.4 shows that we can choose splittings of the exact sequence in the above diagram so that
the diagram still commutes. Therefore Theorem 4.1 shows that the cup product construction of Lemma
4.6 is given (up to isomorphism) by first restricting Hp(Zj , Zj−1)→ Hp(Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ) to a
pair localised around the upper critical set and the space of flow lines, and then applying the localised
cup product construction of Lemma 5.2.

This is summarised in the following proposition.

Proposition 5.3. Let f : Z → R satisfy Conditions (1)–(5) of [30], so there is a Morse filtration
∅ = Z−1 ⊂ Z0 ⊂ · · · ⊂ Zn = Z and Theorem 4.1 applies. Use Lemma 4.4 to choose compatible
splittings of each row in (5.4) and let ω ∈ Hm(Z) and let ωj be the restriction to Hm(Zj). Then the
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cup product homomorphism c(ω) : Hp(Zj , Zj−1)→ Hp+m(Zj+1, Zj) of Lemma 4.6 factors through the
bottom row in the following diagram.

(5.5)

Hp(Zj , Zj−1) Hp+m(Zj+1, Zj)

Hp(Wj ,Wj,0) Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) Hp+m(Wj+1,Wj+1,0)

∼=Thm. 4.1
restriction

cω (Lem. 4.6)

∼=Thm. 4.1
cω (Lem. 5.2)

Therefore we see that the main theorem of Morse theory (Theorem 4.1) allows us to interpret the
cup product homomorphism via the maps in the bottom row of the above diagram. Equivalently, this
expresses the cup product construction in terms of cohomology groups of spaces localised around the
critical sets and spaces of flow lines.

In particular, up to the isomorphisms given by Theorem 4.1, the cup product in H∗(Z) corresponds
to a homomorphism along the bottom row of the above diagram

(5.6) Hp(Wj ,Wj,0)→ Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 )→ Hp+m(Wj+1,Wj+1,0).

Remark 5.4. It is sometimes useful to consider classes ω ∈ Hm(Wj+1) that may not be in the image
of the restriction Hm(Z)→ Hm(Wj+1). In this case we have the diagram

(5.7)

Hp(Zj , Zj−1) Hp+m(Zj+1, Zj)

Hp(Wj ,Wj,0) Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) Hp+m(Wj+1,Wj+1,0)

∼=Thm. 4.1
restriction ∼=Thm. 4.1

cω (Lem. 5.2)

for which there is an induced homomorphism Hp(Zj , Zj−1)→ Hp+m(Zj+1, Zj), which may not come
from a cup product in H∗(Z). This is the case for the convolution homomorphism in Section 9.4, where
we can interpret this homomorphism as cup product on a product space Z×Gr, and the dashed arrow
in the diagram above via pullback to this space.

6. A modified version of transversality

The construction of the cup product and differentials from the previous two sections is valid for a
(possibly singular) space Z inside an ambient manifold M satisfying the conditions of Theorem 4.1.
It then remains to interpret the topological meaning of the homomorphisms (5.1) and (5.6) in terms
of critical sets and spaces of flow lines between them. In the Morse-Bott setting this requires the
additional Morse-Bott-Smale transversality condition (cf. [4]).

In this section we return to the smooth space M and show in Proposition 6.2 that this transver-
sality condition can be weakened so that the first homomorphism in (5.1) and (5.6) is isomorphic to
pullback from the lower critical set Cℓ to the space of flow lines F

j+1,0
j,0 followed by cup product with
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a certain Euler class (cf. the diagrams (6.5) and (6.6)). The main example of interest is the space of
representations of a quiver, for which this Euler class can be computed using Corollary 2.31.

It then remains to interpret the second homomorphism in (5.1) and (5.6), which is the main result
of Section 8, where we show that this can be expressed in terms of a pushforward homomorphism from
the space of flow lines to the upper critical set.

6.1. Modified transversality conditions. First we recall the basic idea of the case where the
function is Morse-Smale or Morse-Bott-Smale. These ideas have been developed by a number of
authors such as Thom, Smale [27], Witten [31] (see [6] for an overview) and the resulting Morse
complex has been explained in detail by Austin and Braam [4].

Since the function is Morse or Morse-Bott, then the first page of the spectral sequence consists of
terms

Hp(Mj ,Mj−1) ∼= Hp−λj (Cj).

The space of points on a flow line between the adjacent critical sets Cj and Cj+1 is denoted F
j+1,0
j,0 and

the quotient by the R-action of the flow is denoted F̃
j+1,0
j,0 , with associated upper and lower projection

maps πℓ : F
j+1,0
j,0 → Cj , πu : Fj+1,0

j,0 → Cj+1 and π̃ℓ : F̃
j+1,0
j,0 → Cj , π̃u : F̃j+1,0

j,0 → Cj+1. The differential
on the first page of the spectral sequence is then given by [4, Thm. 3.1]

d1 : H
p−λj (Cj)→ Hp−λj+1+1(Cj+1)

η 7→ (π̃u)∗π̃
∗
ℓ (η)

and the cup product with ω ∈ Hm(M) is given by [4, Thm. 3.11], which has a component mapping
H∗(Cj) to H∗(Cj+1) determined by

c(ω) : Hp−λj (Cj)→ Hp−λj+1+m(Cj+1)

η 7→ (πu)∗(ω ⌣ π∗
ℓ (η)).

The proof given in [4] uses de Rham cohomology, however our construction below will use singular
cohomology since this behaves well when we pull back to a singular space in Theorem 9.8.

The whole process described above works because the stable and unstable manifolds intersect trans-
versely, however (as we have seen in Proposition 2.29) this is not satisfied for the norm-square of a
moment map on the space of representations of a quiver, therefore we have to modify the transversality
conditions to account for this.

Recall that if the stable and unstable manifolds intersect transversely, then the normal bundle of
the stratum Sj inside the ambient manifold M restricts to the normal bundle of Fj+1,0

j,0 = Sj ∩Wj+1,0

inside Wj+1,0. In this section we will show that a modified form of the above construction of the
differentials and cup product is still true if a weaker form of transversality holds, where the normal
bundle of Fj+1,0

j,0 inside Wj+1,0 is only a subbundle of the restriction of the normal bundle of Sj to the
space of flow lines.
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Definition 6.1. Let M be a Riemannian manifold and f : M → R a smooth function satisfying
Conditions (1)–(5) of [30]. The spaces of flow lines satisfy weak transversality if the following conditions
hold.

(T1) The space of flow lines F
j+1,0
j,0 has a tubular neighbourhood in Wj+1,0, denoted Dj → F

j+1,0
j,0 .

(T2) The stratum W+
j has a tubular neighbourhood in M denoted Ṽj → W+

j , which restricts to a
disk bundle Vj → F

j+1,0
j,0 such that Dj is a subbundle of Vj .

Of course, this definition is only useful if these conditions are satisfied for a class of interesting
examples. Lemma 2.28 and Proposition 2.29 show that this is indeed the case for the Morse filtration
of ‖µ− α‖2 on the space of representations of a quiver.

6.2. Consequences of the transversality conditions. The transversality conditions (T1) and
(T2) allow us to carry out the following construction, which will be used in the next two sections to
localise the differentials and cup products from the spectral sequence to spaces of flow lines.

First consider the pair (Mj ,Mj−1). The convergence of the upwards flow determines two sub-
pairs (Wj ,Wj,0) and (Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ). A priori these two pairs are not related, in fact they
do not even intersect, however the main theorem of Morse theory does determine a homomorphism
Hp(Wj ,Wj,0) → Hp(Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ) defined by composing the isomorphism Hp(Wj ,Wj,0) ∼=
Hp(Mj ,Mj−1) with the restriction homomorphism Hp(Mj ,Mj−1)→ Hp(Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ).

(6.1)
Hp(Mj ,Mj−1)

Hp(Wj ,Wj,0) Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 )

∼=
Thm. 4.1

If we also impose Kirwan’s minimal degeneracy condition [12], then the Thom isomorphism shows
that Hp(Wj ,Wj,0) ∼= Hp−λj (Cj). The first transversality condition (T1) shows that there is also a
Thom isomorphism Hp(Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ) ∼= Hp(Dj , Dj \ Fj+1,0
j,0 ) ∼= Hp−νj (Fj+1,0

j,0 ), where νj

is the codimension of Fj+1,0
j,0 ⊂ Vj+1,0. These maps fit together in the following diagram, where the

dashed arrow in the bottom row is induced by the maps in the rest of the diagram.

(6.2)

Hp(Mj ,Mj−1)

Hp(Wj ,Wj,0) Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 )

Hp−λj (Cj) Hp−νj (Fj+1,0
j,0 )

∼=
Thm. 4.1 restriction

∼=Thom ∼=Thom

It now remains to understand the topological meaning of the homomorphism corresponding to the
dashed arrow, which is the content of Proposition 6.2 below.

The minimal degeneracy condition implies that the strata have normal bundles that restrict to the
negative normal bundle on the critical set, and so we can use the Thom isomorphism Hp(Wj ,Wj,0) ∼=
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Hp−λj (Cj). Moreover, on a smooth affine or projective variety this negative normal bundle extends
to a bundle Ṽj → Sj over the entire stratum (cf. [12, Sec. 4]) such that Hp(Wj ,Wj,0) ∼= Hp(Ṽj , Ṽj,0).
Since the space of flow lines is contained in the stratum F

j+1,0
j,0 ⊂ Sj , then Ṽj → Sj restricts to a

bundle over the space of flow lines, which we denote by Vj → F
j+1,0
j,0 .

Hp(Wj ,Wj,0) Hp(Ṽj , Ṽj,0) Hp(Vj , Vj,0)

Hp−λj (Cj) Hp−λj (Sj) Hp−λj (Fj+1,0
j,0 )

∼=

∼=Thom ∼=Thom ∼=Thom

∼=

pullback

restriction

Now if transversality condition (T2) is satisfied, then the tubular neighbourhood of F
j+1,0
j,0 inside

Wj+1,0 is a disk bundle D → F
j+1,0
j,0 , which is a subbundle of Vj . Then Lemma 4.3 shows that we can

augment diagram (6.2) with a homomorphism corresponding to cup product with the Euler class of
the normal bundle of D ⊂ Vj .

(6.3)

Hp(Mj ,Mj−1)

Hp(Wj ,Wj,0) Hp(Ṽj , Ṽj,0) Hp(Vj , Vj,0) Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 )

Hp−λj (Cj) Hp−λj (Sj) Hp−λj (Fj+1,0
j,0 ) Hp−νj (Fj+1,0

j,0 )

∼=
Thm. 4.1 restriction

restriction

∼=Thom

∼=

∼=Thom ∼=Thom ∼=Thom

∼= restriction ⌣e

Therefore we see that, up to the isomorphisms Hp−νj (Fj+1,0
j,0 ) ∼= Hp(Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ) and
Hp−λj (Cj) ∼= Hp(Wj ,Wj,0) (the left and right hand columns of the above diagram), the composition
of homomorphisms

Hp(Wj ,Wj,0)
∼=→ Hp(Mj ,Mj−1)→ Hp(Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ),

which appears in the construction of the differential from Proposition 5.1 and the cup product from
Proposition 5.3, factors through the composition of homomorphisms

Hp−λj (Cj) Hp−λj (Fj+1,0
j,0 ) Hp−νj (Fj+1,0

j,0 )
pullback ⌣e

from the bottom row of the diagram (6.3). The above result is summarised in the following proposition.

Proposition 6.2. Let M be a manifold and f : M → R a minimally degenerate smooth function
satisfying Conditions (1)–(5) of [30] as well as the transversality conditions (T1) and (T2), and let
∅ = M−1 ⊂ M0 ⊂ · · · ⊂ Mn = M be the associated Morse filtration. Then the following diagram
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commutes.

(6.4)

Hp(Mj ,Mj−1)

Hp(Wj ,Wj,0) Hp(Wj+1,0,Wj+1 \ Fj+1,0
j,0 )

Hp−λj (Cj) Hp−λj (Fj+1,0
j,0 ) Hp−νj (Fj+1,0

j,0 )

∼=
Thm. 4.1 restriction

Thom ∼=

pullback ⌣e

Thom ∼=

Therefore the diagram (5.1) for the differential can be augmented with another row corresponding
to the critical sets and spaces of flow lines

(6.5)

Hp(Mj ,Mj−1) Hp+1(Mj+1,Mj)

Hp(Wj ,Wj,0) Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) Hp(Wj+1,0) Hp+1(Wj+1,Wj+1,0)

Hp−νj (Fj+1,0
j,0 ) Hp+1−λj+1(Cj+1)

Hp−λj (Cj) Hp−λj (Fj+1,0
j,0 )

restriction∼=Thm. 4.1

d

∼=Thm. 4.1

Thom ∼= Thom ∼=

Thom ∼=

pullback

⌣e

and the diagram (5.5) for the cup product has an analogous augmentation

(6.6)

Hp(Mj ,Mj−1) Hp+m(Mj+1,Mj)

Hp(Wj ,Wj,0) Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) Hp+m(Wj+1,Wj+1,0)

Hp−νj (Fj+1,0
j,0 ) Hp+m−λj+1(Cj+1)

Hp−λj (Cj) Hp−λj (Fj+1,0
j,0 )

∼=Thm. 4.1
restriction

c(ω) (Lem. 4.6)

∼=Thm. 4.1
c(ω) (Lem. 5.2)

Thom ∼= Thom ∼=

Thom ∼=

pullback

⌣e

Remark 6.3. Lemma 2.30 and Corollary 2.31 show that the Euler class in the above diagrams can
be explicitly computed in terms of the critical point data.

7. Relationship with convolution in Borel-Moore homology

It now remains to interpret the topological meaning of the dashed arrow in diagrams (6.5) and
(6.6). The aim of this section is to explain how how this is related to pushforward in Borel-Moore
homology. There are two cases
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• pushforward on a sphere bundle (Lemma 7.3), which will correspond to the dashed arrow in
the diagram (6.5) for the differential (Proposition 8.1), and
• pushforward on a projective bundle (Lemma 7.4) which will correspond to the dashed arrow

in the diagram (6.6) (Proposition 8.3).

7.1. Pullback and pushforward in Borel-Moore homology. Let M1,M2 be manifolds of dimen-
sion d1, d2 respectively, and let N ⊂ M1 ×M2 be an embedded submanifold of codimension d such
that the projection N

i
↪→M1×M2

p2−→M2 is proper. Then, following [8, Sec. 2.7], there is a pullback
map in Borel-Moore homology

HBM
p (M2)→ HBM

p+d1−d(N)

c 7→ [N ] ∩ ([M1]⊠ c)
(7.1)

where ∩ : HBM
∗ (M1 ×M2)→ HBM

∗−d (N) denotes restriction with supports (cf. [8, Sec. 2.6.21]) and ⊠
denotes the Künneth isomorphism HBM

∗ (M1)⊗HBM
∗ (M2)→ HBM

∗ (M1 ×M2).
First note that the homomorphism HBM

p (M2) → HBM
p+d1

(M1 × M2) given by c 7→ [M1] ⊠ c is
Poincaré dual to the pullback in cohomology Hd2−p(M2) → Hd2−p(M1 ×M2). By definition (cf. [8,
Sec. 2.6.21]), restriction with supports to a submanifold HBM

k (M1 ×M2) → HBM
k−d (N) is Poincaré

dual to restriction in cohomology, and therefore the composition (7.1) of these two homomorphisms
in Borel-Moore homology is Poincaré dual to the composition of these two pullback homomorphisms.
This is summarised in the following lemma.

Lemma 7.1. The following diagram commutes, where the top row is the pullback homomorphism
(7.1), the bottom row is pullback in ordinary cohomology, and the vertical arrows are given by Poincaré
duality.

(7.2)
HBM

p (M2) HBM
p+d1−d(N)

Hd2−p(M2) Hd2−p(N)

∼=P.D. ∼=P.D.

In order to relate the Poincaré dual of pushforward in Borel-Moore homology to the Morse-theoretic
constructions in the subsequent sections, we need the following lemmas. The proofs use well-known
results from the theory, but the statements are needed for the connection with Morse theory in the
next section, so we state and prove everything here for completeness. The first is for the pushforward
of a submanifold by the inclusion map.

Lemma 7.2. Let M be a manifold of dimension n and i : N ↪→M a submanifold of dimension s with
a tubular neighbourhood U . Then the pushforward i∗ : HBM

p (N)→ HBM
p (M) is Poincaré dual to the

composition of the following homomorphisms

Hs(N)
∼=−→ Hn(U,U \N)

∼=−→ Hn(M,M \N)→ Hn(M),

where the first isomorphism is the Thom isomorphism, the second isomorphism is excision and the
final homomorphism comes from the long exact sequence of the pair (M,M \N).
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Proof. This is a special case of the pushforward from the long exact sequence of Borel-Moore homology
for the triple N ↪→M ←↩ M \N , which is defined using Poincaré duality (cf. [8, Sec. 2.6.9]). □

The next lemma is for the case of a sphere bundle associated to a vector bundle.

Lemma 7.3. Let B be a manifold of dimension n, let V → B be a real vector bundle of rank r,
define V0 = V \ B and let π : S → B denote the associated sphere bundle. Then the pushforward
π∗ : H

BM
p (S)→ HBM

p (B) is Poincaré dual to the composition of the following homomorphisms

Hn+r−1−p(S)
∼=−→ Hn+r−1−p(V0)→ Hn+r−p(V, V0)

∼=−→ Hn−p(B)

where the first homomorphism is homotopy equivalence, the second is the connecting homomorphism in
the long exact sequence of the pair (V, V0) and the third is the pushforward from the Thom isomorphism.

Proof. This follows from the fact that, on a smooth manifold, the pushforward in the Thom-Gysin
sequence is given by integration over the fibres (cf. [7, Prop. 14.33]), which is Poincaré dual to the
pushforward in Borel-Moore homology. □

Let B be a manifold of dimension dimRB = n and let π : E → B be a smooth fibre bundle with
smooth compact fibres diffeomorphic to F with dimR F = r. Suppose that the conditions of the
Leray-Hirsch theorem are satisfied, so that there exist classes ζ1, . . . , ζm ∈ H∗(E) such that for any
fibre i : F ↪→ E the classes i∗(ζ1), . . . , i

∗(ζm) generate H∗(F ) as a group. In the following we choose
the ordering so that i∗(ζm) generates the top dimensional cohomology Hr(F ). For example, these
conditions are satisfied when E is the projectivisation of a complex vector bundle, where the classes
ζ1, . . . , ζm are powers of the Chern classes of the tautological line bundle over E.

The following lemma describes the pushforward map in this setting.

Lemma 7.4. The pushforward in Borel-Moore homology π∗ : HBM
p (E)→ HBM

p (B) is Poincaré dual
to the pushforward by fibre integration

π∗ : H
n+r−p(E)→ Hn−p(B)

π∗ (π
∗(β) ⌣ ζk) =

{
β if k = m

0 if 0 ≤ k < m

(7.3)

Proof. Let b ∈ HBM
p (B) be Poincaré dual to β ∈ Hn−p(B) and let ck ∈ HBM

n+r−ℓ(E) be Poincaré dual
to ζk ∈ Hℓ(E) for k = 1, . . . ,m.

Since E and B are manifolds and the fibres of π : E → B are compact manifolds, then pullback to
a fibre bundle in Borel-Moore homology is Poincaré dual to pullback in ordinary cohomology (cf. [8,
p102]), and so

π∗(b) ∈ HBM
p+r (E) is Poincaré dual to π∗(β) ∈ Hn−p(E).

The intersection pairing in Borel-Moore homology is Poincaré dual to cup product in cohomology (cf.
[8, Sec. 2.6.15]), therefore

π∗(b) ⌢ ck is Poincaré dual to π∗(β) ⌣ ζk for all k = 1, . . . ,m.
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The following special case of the projection formula in Borel-Moore homology

π∗(π
∗(b) ⌢ ck) = b ⌢ π∗(ck) where b ∈ HBM

∗ (B) and ck ∈ HBM
∗ (E),

is valid when E and B are manifolds (cf. [8, (2.6.29]).
If ζk ∈ Hℓ(E) for k < m, then ` < r (since the fibre F is smooth and compact). Then the Poincaré

dual ck ∈ HBM
n+r−ℓ(E) satisfies π∗(ck) = 0 for dimensional reasons, therefore π∗(π

∗(b) ⌢ ck) = b ⌢
π∗(ck) = 0.

If k = m, then π∗(β) ⌣ ζm ∈ Hn+r−p(E) is Poincaré dual to π∗(b) ⌢ cm ∈ HBM
p (E) and so the

projection formula shows that the pushforward is π∗(π
∗(b) ⌢ cm) = b ⌢ π∗(cm) ∈ HBM

p (B).
Therefore it remains to show that π∗(cm) = [B], which we will do by showing that π∗(cm) restricts

to the fundamental class on each trivialisation π−1(U) → U . First recall that restriction to an open
subset in Borel-Moore homology is induced from pushforward in ordinary relative homology (cf. [8,
Sec. 2.6.9]) which appears as the horizontal homomorphisms in the following diagram

(7.4)
HBM

∗ (E) ∼= H∗(E,E \ E) H∗(E,E \ π−1(U)) ∼= HBM
∗ (π−1(U))

HBM
∗ (B) ∼= H∗(B,B \B) H∗(B,B \ U) ∼= HBM

∗ (U)

j∗

π∗ π∗

j∗

where j is used to denote both the inclusion (Ē, Ē \E) ↪→ (Ē, Ē \ π−1(U)) and the inclusion (B̄, B̄ \
B) ↪→ (B̄, B̄ \ U). Each homomorphism is induced from a continuous map of pairs, therefore the
diagram commutes.

Restriction in Borel-Moore homology can also be defined using Poincaré duality as part of the
construction of the long exact sequence for Borel-Moore homology (cf. [8, Sec. 2.6.9]). Since all the
spaces E, B, π−1(U) and U are manifolds, then the top and bottom rows in the above diagram are
induced via pullback in cohomology

HBM
∗ (E) ∼= Hn+r−∗(E) Hn+r−∗(π−1(U)) ∼= HBM

∗ (π−1(U))

HBM
∗ (B) ∼= Hn−∗(B) Hn−∗(U) ∼= HBM

∗ (U)

j∗

j∗

In particular, the classes ζk ∈ Hn+r−∗(E) restrict to classes ξk ∈ Hn+r−∗(π−1(U)) for which the
Leray-Hirsch property implies that they restrict to generators of the cohomology of each fibre. Since
π−1(U) ∼= U × F → U is trivial, then the pushforward in Borel-Moore homology has an explicit
description, which maps the Poincaré dual of ξm to the fundamental class [U ]. Therefore in diagram
(7.4) we have π∗ ◦ j∗(cm) = [U ]. Commutativity of (7.4) then implies [U ] = j∗ ◦ π∗(cm), and therefore
π∗(cm) restricts to the fundamental class [U ] of each trivialisation. This is the defining property of
the fundamental class [B], which must therefore be equal to π∗(cm). Therefore

π∗(π
∗(b) ⌢ cm) = b ⌢ [B] = b

is Poincaré dual to β = π∗(π
∗(β) ⌣ ζm) defined using (7.3), which completes the proof. □
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Now we consider a special case of the above construction when the fibre bundle is the projectivisation
of a complex vector bundle. In this setting we will show that the pushforward is given by a construction
analogous to that for the cup product from in Sections 4.5 and 5.2.

Let B be a manifold, let V → B be a complex vector bundle of complex rank r, and let V0 denote
the vector bundle minus the zero section. Suppose that there is an action of S1 on V fixing the zero
section such that the projection π : V → B is S1-equivariant and the action on each fibre is linear with
weight one. The Atiyah-Bott lemma then implies that the horizontal rows of the following diagram
are exact

(7.5)
0 Hp

S1(V, V0) Hp
S1(V ) Hp

S1(V0) 0

0 Hp−2r
S1 (B) Hp

S1(B) Hp(PV ) 0

∼= ∼= ∼=
⌣e π∗

where e denotes the S1-equivariant Euler class of V . Since e ∈ H2r
S1(B) then it follows from the

exactness of the bottom row of the above diagram that Hp
S1(B) ∼= Hp(PV ) for all p < 2r − 1.

Let ξ ∈ H2(PV ) ∼= H2
S1(V0) denote the first Chern class of the projective bundle π : PV → B. For

each k = 0, . . . , r − 1, the restriction of ξk to any fibre Pr−1 ∼= PVx is a generator of H2k(Pr−1). The
Leray-Hirsch theorem then determines an isomorphism of groups∑

ℓ+2k=m

Hℓ(B)⊗H2k(Pr−1)→ Hm(PV )

∑
β ⊗ i∗(ξk) 7→ π∗(β) ⌣ ξk.

(7.6)

For k = 1, . . . , r, define γk := π∗ck(V ) ∈ H2k(PV ). Recall that, since the action of S1 fixes the
zero section and acts freely with weight one on the fibres, then H∗

S1(B) ∼= H∗(B)[ξ] and H∗
S1(V0) ∼=

H∗(PV ) ∼= H∗(B)[ξ]/ ∼ with the relation

(7.7) ξr + c1(V ) ⌣ ξr−1 + · · ·+ cr(V ) ∼ 0,

where the isomorphism is given by pullback H∗
S1(B)→ H∗

S1(V0) ∼= H∗(PV ) (cf. [1, Ch. VII]).
Therefore, in the exact sequence (7.5), we see that the equivariant Euler class is

e(V ) = ±
(
ξr + c1(V )ξr−1 + · · ·+ cr(V )

)
∈ H∗

S1(B) ∼= H∗(B)[ξ].

This Euler class and the Leray-Hirsch theorem can be used to construct an explicit splitting of the
bottom row of (7.5) as follows. There is a splitting that respects the group structure in the graded
cohomology rings

(7.8) i : H∗(PV ) ∼= H∗(B)[ξ]/ ∼ H∗
S1(B) ∼= H∗(B)[ξ]

given by first using the Leray-Hirsch isomorphism, and then defining a homomorphism of groups

H∗(PV ) ∼= H∗(B)⊗H∗(Pr−1)→ H∗
S1(B) ∼= H∗(B)⊗H∗(BU(1))

i(π∗(β) ⌣ ξk) = β ⊗ ξk.
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Now we define the splitting homomorphism for the map ⌣ e in (7.5)

(7.9) pr : Hp
S1(B)→ Hp−2r

S1 (B)

by contracting with the Euler class as follows. Given η = β ⊗ ξk ∈ H∗
S1(B) ∼= H∗(B)⊗H∗(BU(1)), if

k ≥ r then we can rewrite

η = (β ⊗ ξk−r)⊗ ξr = (β ⊗ ξk−r) ⌣ e+ lower order terms

where “lower order” means that the power of ξ is less than k. Repeating this process, we obtain
η = η′ ⌣ e+ η′′, where η′′ is a sum of terms of the form β′′ ⊗ ξk with k ≤ r − 1. Now define

pr(η) = η′

and note that pr ◦ i = 0, therefore this is a well-defined splitting of the sequence (7.5).
From Lemma 7.4, the pushforward H∗(PV ) → H∗(B) which is Poincaré dual to the pushforward

in Borel-Moore homology is then given by

(7.10) π∗(π
∗(β) ⌣ ξk) 7→ β ⌣ π∗(ξ

k) =

{
β k = r − 1

0 otherwise.
The following lemma shows that this can be interpreted in terms of the cup product construction

given above.

Lemma 7.5. With the same notation and conditions as above, the pushforward Hp(PV )→ Hp−2r(B)

is given by

(7.11) π∗(η) = pr(i(η)⊗ ξ),

where pr and i are the splitting homomorphisms defined above for the exact sequence (7.5).

Proof. From (7.10), the pushforward is nonzero if and only if η = π∗(β) ⌣ ξr−1, in which case
π∗(η) = β and i(η)⊗ ξ = β⊗ ξr ∈ H∗

S1(B). Therefore the above construction of the splitting pr shows
that pr(i(η)⊗ ξ) = pr(β ⊗ ξr) = β = π∗(η).

In the case that η = π∗(β) ⌣ ξk with k < r − 1, then π∗(η) = 0 and pr(β ⊗ ξk+1) = 0. □

Remark 7.6. Therefore we see that the pushforward is given by a process analogous to that of the cup
product construction of Lemma 5.2. This is made precise in Proposition 8.3 below, which shows that
the cup product on the Morse complex factors through this pushforward. In the proof of Proposition
8.3 we will use the above general construction in the following context of representations of quivers.

Consider two adjacent critical sets Cℓ (lower) and Cu (upper) with associated dimension vectors
vℓ and vu from [29, Prop. 3.13] and let W−

u be the unstable bundle of Cu (equivalently, use the
homeomorphism of Theorem 2.11 to replace W−

u with the negative slice bundle S−
u in the following).

Suppose also that v = vℓ so that Cℓ minimises ‖µ− α‖2 : Rep(Q,v)→ R. Then Cℓ/Kvℓ
∼= M(Q,vℓ)

and Cu/Kvu is homotopy equivalent to M(Q,vu) by Corollary 2.19. In equivariant cohomology we
have

H∗
Kvℓ

(Cℓ) ∼= H∗(M(Q,vℓ))⊗H∗(BU(1)) and H∗
Kvℓ

(Cu) ∼= H∗(M(Q,vu))⊗H∗(BU(1))⊗2
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since the scalar multiples of the identity in Kvℓ
act trivially on Rep(Q,vℓ) and each upper critical

point determines a reduction of structure group from Kvℓ
to Kvu × U(1).

This second factor of U(1) acts freely on S−
u,0 and the projection S−

u,0 → Cu is Kvℓ
-equivariant, so

this bundle descends to the quotient by Kvℓ

S−
u,0/Kvℓ

→M(Q,vu),

with an induced map in cohomology

H∗(M(Q,vu))⊗H∗(BU(1))→ H∗(S−
u,0/Kvℓ

).

Lemma 8.2 and Proposition 8.3 use the first Chern class of the projective bundle ξ ∈ H2(S−
u,0/Kvℓ

).

Remark 7.7. A priori the pushforward lies in H∗
Kvℓ

(Cu) ∼= H∗(M(Q,vu))⊗H∗(BU(1), however we
see from the above construction that the image of (7.10) lies in H∗(M(Q,vu)). This will be important
in the final step of the convolution construction of (9.9), where the image of the convolution lies in
H∗(M(Q,vu)).

8. The differential and cup product as convolution operators

The aim of this section is to relate convolution in Borel-Moore homology from the previous section
to the differential and cup product from Section 6. In particular, we will show that the dashed arrows
in diagrams (6.5) and (6.6) are Poincaré dual to pushforward in Borel-Moore homology. Coupled with
the pullback homomorphisms from (6.5) and (6.6), this will show that the differential and cup product
are Poincaré dual to convolution in Borel-Moore homology.

8.1. Expressing the differentials in terms of pullback and pushforward homomorphisms.
Now we focus on the following part of diagram (6.5) and interpret the dashed arrow in terms of
pushforward in Borel-Moore homology.

(8.1)
Hp(Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ) Hp(Wj+1,0) Hp+1(Wj+1,Wj+1,0)

Hp−νj (Fj+1,0
j,0 ) Hp+1−λj+1(Cj+1)

Thom ∼= Thom ∼=

Following the notation of [4], let F̃
j+1,0
j,0 = F

j+1,0
j,0 /R denote the quotient by the R-action of the flow

and note that this is a homotopy equivalence, so H∗(Fj+1,0
j,0 ) ∼= H∗(F̃j+1,0

j,0 ).

Proposition 8.1. Consider a minimally degenerate Morse function satisfying the conditions of The-
orem 4.1 and the weak transversality conditions of Definition 6.1. Then the homomorphism corre-
sponding to the dashed arrow in (8.1) is Poincaré dual to the pushforward in Borel-Moore homology
associated to the proper projection map F̃

j+1,0
j,0 → Cj+1 taking a point on a flow line to the critical

point which is the limit of the upwards flow.
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Proof. After using the flow to define a homotopy Wj+1,0 'Wj+1,0/R of Wj+1,0 with a sphere bundle,
Lemma 7.2 implies that the composition

Hp−νj (F̃j+1,0
j,0 )→ Hp(Wj+1,0,Wj+1,0 \ F̃j+1,0

j,0 )→ Hp(Wj+1,0)

is Poincaré dual to pushforward in Borel-Moore homology for the inclusion map F̃
j+1,0
j,0 ↪→ Wj+1,0.

Lemma 7.3 then shows that the composition

Hp(Wj+1,0)→ Hp+1(Wj+1,Wj+1,0)→ Hp+1−λj+1(Cj+1)

is Poincaré dual to pushforward for the projection of the sphere bundle Wj+1,0 → Cj+1. Therefore
diagram (8.1) becomes

Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) Hp(Wj+1,0) Hp+1(Wj+1,Wj+1,0)

Hp−νj (Fj+1,0
j,0 ) Hp+1−λj+1(Cj+1)

pushforward
Thom ∼=

pushforward
Thom ∼=

and so the dashed arrow is a composition of homomorphisms which are Poincaré dual to pushforward
in Borel-Moore homology. This composition is then the pushforward associated to the projection
F̃
j+1,0
j,0 → Cj+1 mapping a point on a flow line to the associated upper critical point. □

Therefore the spectral sequence differential between adjacent critical sets is (up to isomorphism
given by the main theorem of Morse theory and the Thom isomorphism) given by a homomorphism
Hp−λj (Cj) → Hp+1−λj+1(Cj+1) which is the composition of pullback to the space of flow lines, cup
product with the equivariant Euler class from Corollary 2.31 and pushforward to the upper critical
set.

(8.2)

Hp(Zj , Zj−1) Hp+1(Zj+1, Zj)

Hp(Wj ,Wj,0) Hp(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) Hp(Wj+1,0) Hp+1(Wj+1,Wj+1,0)

Hp−νj (Fj+1,0
j,0 ) Hp+1−λj+1(Cj+1)

Hp−λj (Cj) Hp−λj (Fj+1,0
j,0 )

restriction∼=Thm. 4.1

d

∼=Thm. 4.1

Thom ∼=

pushforward

Thom ∼=

Thom ∼=

pullback

⌣i∗e

8.2. Expressing the cup product in terms of pullback and pushforward homomorphisms.
In this section we use equivariant cohomology with respect to a circle action on Wj+1 satisfying
the conditions of the Atiyah-Bott Lemma [2, Prop. 13.4], namely that the action is free on Wj+1,0

and fixes the zero section Cj+1. We also assume that this action comes from a circle subgroup of a
compact group acting on the total space M and preserving the filtration M0 ⊂ · · · ⊂Mn = M . These
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assumptions are satisfied in applications where M is a symplectic manifold with a Hamiltonian group
action and moment map µ, and the associated filtration is determined by the gradient flow of ‖µ‖2

(cf. [12]).
First recall the diagram (6.6). For the remainder of this section we focus on the following subdiagram

and interpret the topological meaning of the dashed arrow as the composition of cup product followed
by pushforward in Borel-Moore homology

(8.3)
Hp

K(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) Hp+m

K (Wj+1,Wj+1,0)

H
p−νj
K (Fj+1,0

j,0 ) H
p+m−λj+1

K (Cj+1)

cω (Lem. 5.2)

Thom ∼= Thom ∼=

The first result says that, in the case where we take cup product cξ in the top row of (8.3) with
respect to the class ξ from Remark 7.6, then the dashed arrow in (8.3) is Poincaré dual to pushforward
in Borel-Moore homology in the bottom row.

Lemma 8.2. With the same assumptions as Proposition 8.1, let ξ ∈ H2(PWj+1) denote the first
Chern class of the projective bundle PWj+1 → Cj+1. Then the pushforward in Borel-Moore homology
associated to the proper projection map F̃

j+1,0
j,0 /S1 → Cj+1 which takes an S1 orbit to the critical point

given by the upwards flow is Poincaré dual to the homomorphism corresponding to the dashed arrow
in (8.3) for the case ω = ξ.

Proof. Lemma 7.2 (see also Remark 7.6) shows that the homomorphism

H
p−νj
K (Fj+1,0

j,0 )→ Hp
K(Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 )→ Hp
K(Wj+1,0)

is Poincaré dual to pushforward in Borel-Moore homology corresponding to inclusion of the subman-
ifold F

j+1,0
j,0 ↪→Wj+1,0. Therefore it remains to push forward to the critical set Cj+1.

Lemma 7.5 shows that there are canonical splitting homomorphisms (7.8) and (7.9) for the short
exact sequences associated to the pair (Wj+1,Wj+1,0) such that pushforward is given by the homo-
morphism (7.11).

Given the Chern class ξ ∈ H2(PWj+1), the cup product map cξ from Lemma 5.2 comes from
diagram (5.4), which can be augmented with another restriction homomorphism to the short exact
sequence of the pair (Wj+1,Wj+1,0) in the bottom row of the following diagram
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Hp
K(Wj+1,Wj+1,0 \ Fj+1,0

j,0 ) Hp
K(Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ) 0

0 Hp+2
K (Wj+1,Wj+1,0) Hp+2

K (Wj+1,Wj+1,0 \ Fj+1,0
j,0 )

Hp
K(Wj+1) Hp

K(Wj+1,0) 0

0 Hp+2
K (Wj+1,Wj+1,0) Hp+2

K (Wj+1)

⌣ξ

=

⌣ξ

Recall from Lemma 4.4 that splitting homomorphisms for each row of the above diagram can be
chosen to be compatible with these canonical splitting homomorphisms for the short exact sequences
associated to the pair (Wj+1,Wj+1,0). In particular, the cup product homomorphism from Lemma
5.2 restricts to the pushforward homomorphism (7.11) from Lemma 7.5. Therefore the dashed arrow
in (8.3) corresponds to the composition of pushforward homomorphisms.

Hp
K(Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ) Hp
K(Wj+1,0) Hp+2

K (Wj+1,Wj+1,0)

H
p−νj
K (Fj+1,0

j,0 ) H
p+2−λj+1

K (Cj+1)

cξ (Lem. 7.5)

pushforward
Thom ∼=

pushforward
Thom ∼=

Therefore, in the case ω = ξ, the cup product homomorphism for the triple (Wj+1,Wj+1,0,Wj+1,0 \
F
j+1,0
j,0 ) from Proposition 5.3 restricts to the pushforward given by (7.11). □

More generally, one can take cup product with ω = η ⌣ ξ for arbitrary η ∈ Hm−2
K (Z).

Proposition 8.3. With the same assumptions as Lemma 8.2, the cup product on the Morse complex
with a class ω = η ⌣ ξ ∈ H∗

K(Wj+1) is induced by pullback from the lower critical set to the space of
flow lines, then cup product with the Euler class from Corollary 2.31, then cup product with the class
η followed by pushforward to the upper critical set.
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Therefore the dashed arrow in diagram (6.6) can be filled in as follows
(8.4)
Hp

K(Mj ,Mj−1) Hp+m
K (Mj+1,Mj)

Hp
K(Wj ,Wj,0) Hp

K(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) Hp+m

K (Wj+1,Wj+1,0)

H
p−νj
K (Fj+1,0

j,0 ) H
p+m−νj
K (Fj+1,0

j,0 ) H
p+m−λj+1

K (Cj+1)

H
p−λj

K (Cj) H
p−λj

K (Fj+1,0
j,0 )

∼=Thm. 4.1
restriction ∼=Thm. 4.1

c(η⌣ξ) (Lem. 5.2)

Thom ∼=

⌣η push

forward

Thom ∼=

Thom ∼=

pullback

⌣e

From the above, we see that the class ξ ∈ H2
K(Wj+1) can be used to turn the Morse-theoretic cup

product from Proposition 5.3 into pushforward (Lemma 8.2) or, more generally, cup product followed
by pushforward (Proposition 8.3). Two questions now remain. Firstly, what happens when we restrict
to the subset of representations of a quiver which satisfy a given set of relations? Secondly, what is
the topological meaning of the induced homomorphism Hp

K(Mj ,Mj−1) → Hp+m
K (Mj+1,Mj) in the

diagram (8.4)?
These questions are answered in the next section, where we show that cup product with the right

choice of class η in (8.4) pulls back to a homomorphism Poincaré dual to convolution in Borel-Moore
homology (Theorem 9.8) and that we can interpret this in the Morse spectral sequence by pulling
back from M to a product M × Gr and applying the cup product in the Morse spectral sequence of
this product space (diagram (9.9)).

9. Convolution in Borel-Moore homology is determined by the cup product

Now we return to the case of representations of a quiver with complete quadratic relations (Definition
2.2) that are fully restricted (Definition 3.2) from the relations for a Nakajima quiver. If there are
loops then we also impose the condition of Definition 3.9. As a consequence of these conditions, the
subset of stable representations is smooth (Corollary 3.6) and the space of flow lines between adjacent
critical sets is smooth (Corollary 3.13). These conditions are not too restrictive, as this setup includes
Nakajima quivers without loops (Example 2.3), the ADHM quiver (Remark 3.10) and handsaw quivers
(Examples 2.4 and 3.7), but is not limited to these examples.

The goal of this section is to prove Theorem 9.8, which uses the cup product on the Morse complex to
show that the convolution homomorphism of [18, Sec. 2(i)] and [8, (2.7.14)] in Borel-Moore homology
can be constructed by first applying cup product on the Morse complex of the product of the ambient
smooth space M = Rep(Q,v) with a Grassmannian and then restricting to the singular subset ν−1(0).
The key is to take cup product with the correct class, which in this case is the Thom class of a certain
submanifold of the space of flow lines in Rep(Q,v).
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For the remainder of this section, fix two adjacent critical sets Cu (upper) and Cℓ (lower) corre-
sponding to the respective strata Mj+1 \Mj and Mj \Mj−1, with associated dimension vectors vu and
vℓ = vu + ek and use the homotopy equivalence of Corollary 2.20 so that Cu/Kvu

∼= M(Q,vu)× {0}
and Cℓ/Kvℓ

∼= M(Q,vℓ)× {0}.
In constructing the cup product on the Morse complex, the results of Section 6.2 show that it is

sufficient to consider the case where Cℓ is the minimum of ‖µ − α‖2 on Rep(Q,v), so that v = vℓ.
If v > vℓ so that Cℓ is non-minimal then the construction follows diagram (6.6), which includes the
additional step in which we take cup product with the Euler class of Corollary 2.31. Therefore, for
the remainder of this section we fix v = vℓ = vu + ek.

First note that the lower critical set Cℓ determines a reduction of structure group from Kv to
Kvℓ
× Kv−vℓ

with respect to which (modulo Kv) a critical representation can be written as xℓ =

x
(1)
ℓ + x

(2)
ℓ . Corollary 2.20 shows that there is a Kvℓ

-equivariant homotopy equivalence to the subset
of representations for which x

(2)
ℓ = 0.

Now recall that the upper critical set determines a reduction of structure group (Corollary 2.19) so
that

H∗
Kvℓ

(Cu) ∼= H∗
Kvu

(Cu)⊗H∗(BKek)

with Cu/Kvu
∼= M(Q,vu)×{0} and Kek

∼= U(1). The circle subgroup {id}×U(1) ⊂ Kvu ×U(1) then
acts freely on F

u,0
ℓ,0 .

Now that we have fixed the lower and upper critical sets, then we drop this notation from the space
of flow lines and use F = F

u,0
ℓ,0 .

9.1. Construction of the Thom class. Given this choice of upper critical set Cu, recall the def-
inition of the negative slice bundle πu : S−

u → Cu (2.32), and the unstable bundle (2.29), which we
denote by W−

u . Theorem 2.11 determines a homeomorphism of pairs

(S−
u , S

−
u,0)

∼=↔ (W−
u ,W−

u,0).

The space of flow lines F ⊂ W−
u,0 is then mapped into the negative slice bundle, and we abuse the

notation by also using F ⊂ S−
u,0 to denote the image. The above homeomorphism then extends to a

homeomorphism of triples

(S−
u , S

−
u,0, S

−
u,0 \ F)

∼=↔ (W−
u ,W−

u,0,W
−
u,0 \ F).

The negative slice bundle is a linearisation of the unstable set, which simplifies the deformation
theory associated to the subsets B, N and T defined below. We can construct normal bundles inside
the negative slice and then use the above homeomorphism to map these into the unstable set W−

u .
The homeomorphism guarantees that these images will also have well-defined normal bundles.

Define
B = F ∩ ν−1(0) ⊂ S−

u .

Since ν−1(0) is closed and preserved by the flow, then any flow line in B has both upper and lower
limits in ν−1(0). Conversely, if the lower limit is in ν−1(0) then Lemma 2.23 shows that all points



60 GRAEME WILKIN

in the flow line are isomorphic to the lower limit and hence in ν−1(0). The result of [29, Thm. 4.35]
shows that B/Kvℓ

is the Hecke correspondence for the quiver varieties M(Q,vℓ,R) and M(Q,vu,R).
Now define

T = π−1
u (ν−1(0) ∩ Cu) ∩ F ⊂ S−

u

and
N = {x ∈ F | ν(x) = ν(πu(x))} ⊂ S−

u .

Note that
T ∩N = {x ∈ F | ν(x) = ν(πu(x)) = 0} = F ∩ ν−1(0) = B.

Lemma 9.1. F and T are manifolds, and N ⊂ F and B ⊂ T are submanifolds with the same
codimension d.

Proof. Recall that the fibres of F are determined by the cokernel of (2.49). The upper critical set
Cvu is preserved by the action of Kvu and (within the stratum Rep(Q,vu)

st) the normal bundle to
the critical set has fibres given by the infinitesimal action of ikvu ⊂ gvu . The deformation complex
describing the tangent space of F is then given by

ikvu Hom1(Q, ek,vu)⊕Hom1(Q,vu,vu).
ρC
(xu+y)

Stability of xu implies that (modulo the scalar multiples of the identity in kvu) this homomorphism
is injective. A point of N is given by a pair xu + y ∈ S−

u , where xu ∈ Cu and ν(xu + y) = ν(xu).
Therefore Lemma 2.1 shows that xu + y ∈ N if and only if dνxu(y) = 0 and so the derivative of this
condition defines the tangent bundle of N , which is given by the middle cohomology of the following
complex

ikvu Hom1(Q,vu,vu)⊕Hom1(Q, ek,vu) Rel0(Q, ek,vu,R),
ρC
(xu+y) dνxu+dνy

where (using the notation of (3.6) in Example 3.11)

(9.1) (dνxu + dνy)(δx, δy) = dνxu(δy) + dνy(δx).

Now xu + y ∈ Rep(Q,vℓ) is stable by Lemma 2.23 and therefore Lemma 3.12 shows that the adjoint
of dν(xu+y) is injective. Now note that the adjoint of the homomorphism above is the restriction of
dν∗(xu+y) to Rel(Q, ek,vu,R) and therefore must also be injective. Therefore N ⊂ F is smooth and the
normal bundle is determined by the image of the adjoint of (9.1) in the above deformation complex.

A similar construction works for B. For hyperkähler quivers and handsaw quivers, Nakajima has
already shown that B is smooth (cf. [19, Sec. 5] and [22, Sec. 5]) using deformation theory inside
M(Q,vu)×M(Q,vu+ek), however here the goal is to relate the normal bundles of B ⊂ N and T ⊂ F

and so we instead use the deformation theory of B ⊂ N ⊂ F. The associated deformation complex is

ikvu Hom1(Q,vu,vu)⊕Hom1(Q, ek,vu) Rel0(Q,vu,vu,R)⊕ Rel(Q, ek,vu,R)
ρC
(x+y) dν(xu+y)
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where the extra condition xu ∈ ν−1(0) determines an extra term in the derivative compared to the
above (9.1)

dν(xu+y)(δx, δy) = (dνxu(δx), dνxu(δy) + dνy(δx)) .

Again, since xu + y is stable, then the adjoint of dν(xu+y) is injective (modulo scalar multiples of the
identity) by Lemma 3.12 and so the normal bundle of B ⊂ F is determined by the image of dν∗(xu+y).

In order to determine the normal bundle of B ⊂ T , the definition T = π−1
u (ν−1(0) ∩ Cu) ∩ F

determines an extra a priori condition dνxu(δxu) = 0 on the tangent space which leads to the following
deformation complex

ikvu Hom1(Q,vu,vu)⊕Hom1(Q, ek,vu) Rel(Q, ek,vu,R).
ρC
(xu+y) dνxu+dνy

For the same reason as before, this homomorphism is surjective and the normal bundle of B ⊂ T

has fibres given by the image of the adjoint (dνxu + dνy)
∗, which is injective and therefore has the

same dimension as the image of the adjoint of (9.1), which corresponds to the fibres of the normal
bundle of N ⊂ F □

Let τB ∈ Hd(T, T \ B) and τN ∈ Hd(F,F \ N) be the Thom classes associated to the respective
inclusions B ↪→ T and N ↪→ F. Denote the inclusion of pairs by i1 : (T, T \B) ↪→ (F,F \N).

Corollary 9.2. The Thom classes satisfy τB = i∗1τN .

Proof. This follows from the previous proof by noting that the normal bundle of B ⊂ T is the image
of

Rel(Q, ek,vu,R) Hom1(Q,vu,vu)⊕Hom1(Q, ek,vu) ↪→ Hom1(Q,v,v),
(dνxu+dνy)∗

where Hom1(Q,v,v) is a globally defined trivial bundle over B ⊂ T ⊂ F. Therefore the normal bundle
of B ⊂ T is the pullback of the normal bundle of N ⊂ F via the inclusion B ↪→ N , which implies the
relation τB = i∗τN on the Thom classes. □

Now let Gr(vu,vℓ) denote the Grassmannian of vu planes in vℓ, or equivalently injective homo-
morphisms Vect(Q,vu) ↪→ Vect(Q,vℓ) modulo Gvu . Consider the product Rep(Q,vℓ)

st ×Gr(vu,vℓ)

with the induced group action of Kvℓ
on Gr(vu,vℓ). Using the Hermitian structure, a subspace in

Gr(vu,vℓ) corresponds to an orthogonal projection Π : Vect(Q,vℓ)→ Vect(Q,vu). Therefore there is
a continuous projection

pu : Rep(Q,vℓ)
st ×Gr(vu,vℓ)→ Rep(Q,vu)

(x,Π) 7→ ΠxΠ.

Define the open subset U ⊂ Rep(Q,vℓ)
st × Gr(vu,vℓ) as the preimage of Rep(Q,vu)

st by this pro-
jection. There is a continuous map U → Rep(Q,vℓ)

st given by projection onto the first factor. Note
that each x ∈ S−

u,0 comes equipped with a canonical element of Gr(vu,vℓ) determined by reduction of
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structure group at the upper critical point, and therefore the inclusion F ↪→ Su,0 ↪→ Rep(Q,vℓ)
st lifts

as follows

(9.2)
U Rep(Q,vℓ)×Gr(vu,vℓ)

F S−
u,0 Rep(Q,vℓ)

st

There is also a projection onto Hom1(Q, ek,vu) given by ΠxΠ⊥. For each (x,Π) ∈ U , denote
the representations associated to these projections by xu := ΠxΠ ∈ Rep(Q,vu)

st and y := ΠxΠ⊥ ∈
Hom1(Q, ek,vu).

The projection Π also determines a choice of subgroup Kvu ⊂ Kvℓ
and, with respect to the action

of Gvu on x, there is an orthogonal decomposition

Hom1(Q, ek,vu) ∼= im ρCxu
⊕ ker(ρCxu

)∗.

Given y = ΠxΠ⊥ as above, let yh denote the component in ker(ρCxu
)∗ with respect to the above

decomposition. Stability of x + y then implies that yh 6= 0, since otherwise one can construct an
isomorphism between x and a representation with zero component in Hom1(Q, ek,vu), which is then
clearly unstable. Now define

(9.3) Ñ := {(x,Π) ∈ U | ν(xu) = ν(xu + yh)} .

Lemma 9.3. Ñ is a submanifold of U . With respect to the canonical lift F ↪→ U from (9.2), the
intersection Ñ ∩ F is transverse in U and the inclusions of pairs

(T, T \B)
i1
↪→ (F,F \N)

i2
↪→ (U,U \ Ñ)

satisfy

(9.4) τB = (i2 ◦ i1)∗τÑ and τN = i∗2τÑ ,

where τÑ is the Thom class of Ñ ↪→ U .

Proof. The derivative of the condition ν(xu) = ν(xu + yh) is

T(x,Π)

(
Rep(Q,vℓ)

st ×Gr(vu,vℓ)
)

Rel(Q, ek,vu,R)
dνxu+dνy

Again, stability of xu implies that this is surjective, and therefore the adjoint is injective. In particular
we see that the normal bundle of Ñ ⊂ U has fibres given by the image of the adjoint and that the
image of these fibres in T(x,Π)

(
Rep(Q,vℓ)

st ×Gr(vu,vℓ)
)

restricts to the fibres of the normal bundle
of N ⊂ F defined in the previous proof.

Therefore the same argument as above shows that the normal bundle of N ⊂ F is the pullback of
the normal bundle of Ñ ⊂ U via the inclusion N ↪→ Ñ , which implies the relation (9.4) on the Thom
classes. □
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9.2. Global generators for the Thom class. Now consider the image of the Thom class τN ∈
Hd

K(F,F \ N) under the homomorphism Hd
K(F,F \ N) → Hd

K(F). In the sequel we will denote this
image by τ ′N and the goal of this section is to prove Corollary 9.5, which shows that τ ′N is generated
by a global class in H∗

Kvℓ
(Rep(Q,vℓ)×Gr(vu,vℓ)).

Now we show that the inclusion U ↪→ Rep(Q,vℓ)
st×Gr(vu,vℓ) induces a surjection in cohomology.

Coupled with the well-known surjection

H∗(BKvℓ
×BKvℓ

) ↠ H∗
Kvℓ

(Rep(Q,vℓ)
st ×Gr(vu,vℓ))

(using the method of Kirwan [12]), this implies that the image of the Thom class τÑ under the inclusion
H∗(U,U \ Ñ)→ H∗(U) is generated by a class in H∗(BKvℓ

×BKvℓ
).

Lemma 9.4. The inclusion U ↪→ Rep(Q,vℓ) × Gr(vu,vℓ) induces a surjection in Kvℓ
-equivariant

cohomology.

Proof. Choose a fixed Π ∈ Gr(vu,vℓ). We have

Gr(vu,vℓ) ∼= Kvℓ
/ (Kvu × U(1))

and so
H∗

Kvℓ
(Rep(Q,vℓ)×Gr(vu,vℓ)) ∼= H∗

Kvu×U(1)(Rep(Q,vℓ)),

where Kvu × U(1) acts via the choice of Π ∈ Gr(vu,vℓ). Equivalently, there is a canonical decompo-
sition

Rep(Q,vℓ) ∼= Rep(Q,vu)⊕Hom1(Q, ek,vu)⊕Hom1(Q,vu, ek)⊕Hom1(Q, ek, ek).

and Kvu ×U(1) acts via the obvious induced action. Kirwan’s method [12] on Rep(Q,vu) then shows
that there is a surjection

H∗
Kvu×U(1)(Rep(Q,vℓ))

→ H∗
Kvu×U(1)

(
Rep(Q,vu)

α−st ⊕Hom1(Q, ek,vu)⊕Hom1(Q,vu, ek)⊕Hom1(Q, ek, ek)
)
.

It remains to restrict to the subset where xℓ ∈ Rep(Q.vℓ) is stable. We denote this by UΠ with
respect to the above choice of Π ∈ Gr(vu,vℓ), and note that U ∼= Kvℓ

×Kvu×U(1) UΠ. When the
component xu ∈ Rep(Q,vu) is stable, then xℓ is stable if and only if the component in ker(ρCxu

)∗ ⊂
Hom1(Q, ek,vu) is nonzero. Therefore the above projection is homotopy equivalent to a vector bundle
over Rep(Q,vu)

α−st with fibre ker(ρCxu
)∗ via a homotopy equivalence that preserves the subset where

xℓ is stable, and the subgroup {id}×U(1) ⊂ Kvu ×U(1) fixes the base and acts freely on the nonzero
fibres. Therefore the Atiyah-Bott lemma implies that

H∗
Kvu×U(1)

(
Rep(Q,vu)

α−st ⊕Hom1(Q, ek,vu)⊕Hom1(Q,vu, ek)⊕Hom1(Q, ek, ek)
)

→ H∗
Kvu×U(1)(UΠ)

is surjective. The result then follows from the isomorphism

H∗
Kvu×U(1)(UΠ) ∼= H∗

Kvℓ
(U). □
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Corollary 9.5. There is a class τ̃ ∈ H∗
K(Rep(Q,vℓ)×Gr(vu,vℓ)) such that pullback by the inclusion

i : F ↪→ Rep(Q,vℓ)×Gr(vu,vℓ) from (9.2) satisfies i∗τ̃ = τ ′N .

Proof. The previous lemma shows that the image of the Thom class τÑ ∈ H∗
Kvℓ

(U,U \ Ñ)→ H∗
Kvℓ

(U)

is in the image of the pullback by inclusion U ↪→ Rep(Q,vℓ)×Gr(vu,vℓ). Together with Lemma 9.3,
the commutative diagram

H∗
Kvℓ

(Rep(Q,vℓ)×Gr(vu,vℓ))

H∗
Kvℓ

(U,U \ Ñ) H∗
Kvℓ

(U)

H∗
Kvℓ

(F,F \N) H∗
Kvℓ

(F)

shows that τ ′N is in the image of the pullback homomorphism H∗
Kvℓ

(Rep(Q,vℓ) × Gr(vu,vℓ)) →
H∗

Kvℓ
(F). □

The following result is used in the proof of Lemma 9.7.

Corollary 9.6. Inclusion U ↪→ Rep(Q,vℓ)
α−st × Gr(vu,vℓ) induces a surjection in Kvℓ

-equivariant
cohomology.

Proof. There is a sequence of inclusions

U ↪→ Rep(Q,vℓ)
α−st ×Gr(vu,vℓ) ↪→ Rep(Q,vℓ)×Gr(vu,vℓ)

together with the previous lemma shows that the induced homomorphism

H∗
Kvℓ

(Rep(Q,vℓ)×Gr(vu,vℓ))→ H∗
Kvℓ

(U)

is surjective. Therefore

H∗
Kvℓ

(
Rep(Q,vℓ)

α−st ×Gr(vu,vℓ)
)
→ H∗

Kvℓ
(U)

is also surjective. □

9.3. Global generation of the first Chern class of the negative slice bundle. Now we show
that the Chern class ξ ∈ H2

U(1)(W
−
u,0)
∼= H2

U(1)(S
−
u,0)
∼= H2(PS−

u ) used in Lemma 8.2 is generated by a
class in H2

K(Rep(Q,v)×Gr(vu,vℓ).

Lemma 9.7. There exists ξ̃ ∈ H2
K(Rep(Q,v) × Gr(vu,vℓ)) such that i∗ξ̃ = ξ, where i : S−

u,0 ↪→
Rep(Q,v) × Gr(vu,vℓ)) is the inclusion from (9.2) and ξ is the Chern class from Remark 7.6 and
Lemma 8.2.

Proof. Recall from the construction of the submanifold Ñ ⊂ U from (9.3) that given (x,Π) ∈ U the
projection Π induces representations

xu := ΠxΠ ∈ Rep(Q,vu)
α−st and y = ΠxΠ⊥ ∈ Hom1(Q, ek,vu).
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The decomposition Hom1(Q, ek,vu) ∼= ker(ρCxu
)∗⊕ im ρCx then determines a well defined vector bundle

S̃ over U with fibres ker(ρCxu
)∗ ⊂ Hom1(Q, ek,vu) ⊂ Hom1(Q,v,v). Moreover, y ∈ Hom1(Q, ek,vu)

determines a canonical nonzero yh ∈ ker(ρCxu
)∗, which then determines a line in ker(ρCxu

)∗ and hence a
line subbundle L̃ ⊂ S̃.

On the image of the negative slice S−
u,0 ↪→ U , this line bundle L̃ pulls back to the line bundle L

which is the tautological bundle of PS−
u and hence the first Chern class of L̃ restricts to the first Chern

class of L, which is the class ξ used in Lemma 8.2.
Coupled with the surjectivity from Corollary 9.6, this proves the existence of ξ̃ ∈ H2

K(Rep(Q,v)×
Gr(vu,vℓ)) such that i∗ξ̃ = ξ. □

9.4. Cup product with the Thom class on the Morse complex. Now we are in a position to
describe the cup product with the Thom class on the Morse complex and then use the above results to
give a Morse-theoretic construction of convolution in Borel-Moore homology. To simplify the notation
in the following, we use Gr in place of Gr(vu,vℓ).

Lemma 9.3 shows that the Thom class τN is in the image of τÑ ∈ Hd
K(U,U \ Ñ). The image

τ ′
Ñ
∈ Hd

K(U) is in the image of the pullback homomorphism from H∗
Kvℓ

(Rep(Q,vℓ) × Gr(vu,vℓ)) →
H∗

Kvℓ
(U) by Corollary 9.6, and therefore τ ′N is in the image of the pullback

H∗
Kvℓ

(Rep(Q,vℓ)×Gr(vu,vℓ))→ H∗
Kvℓ

(F).

Therefore the cup product

Hk
Kvℓ

(Wu,Wu \ Fu,0
ℓ,0 )×Hd

Kvℓ
(Wu)→ Hk+d

Kvℓ
(Wu,Wu \ Fu,0

ℓ,0 )

(ω, τ ′N ) 7→ ω ⌣ τ ′N

is the restriction of cup product

Hk
Kvℓ

(Mj+1 ×Gr,Mj−1 ×Gr)×Hd
Kvℓ

(Mj+1 ×Gr)→ Hk+d
Kvℓ

(Mj+1 ×Gr,Mj−1 ×Gr)

(ω̃, τ̃) 7→ ω̃ ⌣ τ̃ .

Consider the Chern class ξ from Remark 7.6. Proposition 8.3 then shows that cup product with
τ ′N ⌣ ξ on the space of flow lines induces a homomorphism Hp

K(Mj ,Mj−1) → Hp+m
K (Mj+1,Mj)

between the terms on the first page of the Morse spectral sequence.
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(9.5)
Hp

K(Mj ,Mj−1) Hp+m
K (Mj+1,Mj)

Hp
K(Wj ,Wj,0) Hp

K(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) Hp+m

K (Wj+1,Wj+1,0)

H
p−νj
K (Fj+1,0

j,0 ) H
p+m−νj
K (Fj+1,0

j,0 ) H
p+m−λj+1

K (Cj+1)

H
p−λj

K (Cj) H
p−λj

K (Fj+1,0
j,0 )

∼=Thm. 4.1
restriction ∼=Thm. 4.1

c(τ ′N⌣ξ) (Lem. 5.2)

Thom ∼=

⌣τ ′N push

forward

Thom ∼=

Thom ∼=

pullback

⌣e

Now we can explain the topological meaning of this induced homomorphism. The above results
show that the cup product homomorphism c(τ ′N ⌣ ξ) is the restriction of the analogous homomorphism
on M × Gr, since the classes τ ′N and ξ are the pullback of the corresponding classes τ̃ and ξ̃ via the
inclusion Su ↪→ M × Gr (Corollary 9.5 and Lemma 9.7). Therefore naturality of the cup product
process of Lemma 5.2 implies that the following diagram commutes.

Hp
K(Mj ×Gr,Mj−1 ×Gr) Hp+m

K (Mj+1 ×Gr,Mj ×Gr)

Hp
K(Wj+1,0,Wj+1,0 \ Fj+1,0

j,0 ) Hp+m
K (Wj+1,Wj+1,0)

c(τ̃⌣ξ̃) (Lem. 5.2)

c(τ ′N⌣ξ) (Lem. 5.2)

Naturality of cup product then implies that the restriction Hp
K(Mj ,Mj−1) → Hp

K(Wj+1,0,Wj+1,0 \
F
j+1,0
j,0 ) factors through the pullback to the product Hp

K(Mj ,Mj−1) → Hp
K(Mj × Gr,Mj−1 × Gr) by

the projection M ×Gr→M . Therefore the diagram (9.5) can be augmented as follows

(9.6)

Hp
K(Mj ×Gr,Mj−1 ×Gr) Hp+m

K (Mj+1 ×Gr,Mj ×Gr)

Hp
K(Mj ,Mj−1) Hp+m

K (Mj+1,Mj)

Hp
K(Wj ,Wj,0) Hp

K(Wj+1,0,Wj+1,0 \ Fj+1,0
j,0 ) Hp+m

K (Wj+1,Wj+1,0)

H
p−νj

K (Fj+1,0
j,0 ) H

p+m−νj

K (Fj+1,0
j,0 ) H

p+m−λj+1

K (Cj+1)

H
p−λj

K (Cj) H
p−λj

K (Fj+1,0
j,0 )

c(τ̃⌣ξ̃)

∼=Thm. 4.1
restriction ∼=Thm. 4.1

c(τ ′
N⌣ξ) (Lem. 5.2)

Thom ∼=

⌣τ ′
N push

forward

Thom ∼=

Thom ∼=

pullback

⌣e
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Therefore we see that the induced homomorphism Hp
K(Mj×Gr,Mj−1×Gr)→ Hp+m

K (Mj+1×Gr,Mj×
Gr) pulls back to the cup product homomorphism on the first page of the spectral sequence for M×Gr.

Now recall the convolution construction of [18, Sec. 2(i)] and [8, (2.7.14)] in Borel-Moore homology.
Lemmas 7.1 and 7.4 show that this corresponds via Poincaré duality to the composition of the following
homomorphisms in cohomology

(9.7) Hp
Kvℓ

(Cℓ ∩ ν−1(0)) Hp
Kvℓ

(B) Hp+d−λ
Kvℓ

(Cu ∩ ν−1(0)).
π∗
ℓ (πu)∗

(Recall from [29] that the Hecke correspondence is B/Kvℓ
.)

Since the pushforward Hp
Kvℓ

(B) → Hp+d−λu

Kvℓ
(Cu ∩ ν−1(0)) factors through the inclusion B ↪→ T ,

then the convolution is given by the composition of the following homomorphisms

(9.8) Hp
Kvℓ

(Cℓ ∩ ν−1(0)) Hp
Kvℓ

(B) Hp+d
Kvℓ

(T ) Hp+d−λ
Kvu

(Cu ∩ ν−1(0)).
π∗
ℓ i∗ (πu)∗

Note that the image of the pushforward

H∗+λ
Kvℓ

(T )
(πu)∗−→ H∗

Kvℓ
(Cu ∩ ν−1(0)) ∼= H∗(M(Q,vu)⊗H∗(BU(1)).

lies in H∗(M(Q,vu) ↪→ H∗(M(Q,vu)⊗H∗(BU(1)) (see Remark 7.7). Therefore we use Kvu-equivariant
cohomology for the final term of the above diagram.

Corollary 9.2 shows that cup product with the Thom class commutes with restriction

Hp
Kvℓ

(F) Hp
Kvℓ

(T )

Hp+d
Kvℓ

(F,F \N) Hp+d
Kvℓ

(T, T \B)

Hp+d
Kvℓ

(F) Hp+d
Kvℓ

(T )

i∗

⌣τN ⌣τB

i∗

i∗

The convolution (9.8) is the middle column of the following diagram. Taking the quotient by Kvℓ

gives the homomorphisms in the right hand column, which is Poincaré dual to the convolution used
by Nakajima [18, Sec. 2(i)] and Chriss & Ginzburg [8, (2.7.14)]. The left-hand column is the bottom
row of the diagram (9.6), which therefore corresponds to the cup product on the Morse complex in
the case where Cℓ is a global minimum for ‖µ− α‖2.



68 GRAEME WILKIN

(9.9)

Hp
Kvℓ

(Cℓ) Hp
Kvℓ

(Cℓ ∩ ν−1(0)) Hp(M(Q,vℓ,R))

Hp
Kvℓ

(F) Hp
Kvℓ

(T ) Hp
Kvℓ

(B) Hp(B/Kvℓ
)

Hp+d
Kvℓ

(F,F \N) Hp+d
Kvℓ

(T, T \B)

Hp+d
Kvℓ

(F) Hp+d
Kvℓ

(T )

Hp+d−λu

Kvu
(Cu) Hp+d−λu

Kvu
(Cu ∩ ν−1(0)) Hp+d−λu(M(Q,vu,R))

π∗
ℓ

i∗

π∗
ℓ

π∗
ℓ

∼=

pullback

⌣τN

i∗ i∗

⌣τB
∼=Thom

∼=

pushforward

i∗

(πu)∗

i∗

(πu)∗

i∗ ∼=

When vℓ < v then there is an additional step of cup product with the Euler class of Corollary 2.31
that relates the above construction to the cup product of (9.6).

Combined with the results of the previous section, we have proved the following.

Theorem 9.8. The cup product Hp
K(Mj ×Gr,Mj−1 ×Gr)

⌣(τ̃⌣ξ̃)−→ Hp+d
K (Mℓ+1 ×Gr,Mℓ ×Gr) on the

Morse complex for M × Gr restricts to the local cup product with τ ′N ⌣ ξ in the Morse complex for
M (the left-hand column of (9.9). Restricting this to ν−1(0) determines the middle column of (9.9),
which is then equivalent to convolution (9.8).
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