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Figure 1. The Wente torus: an immersed torus with constant mean curvature.
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1. The Geometry of Space Curves.

Although the main purpose of the module is to understand surfaces using vector calculus,
the study of curves in space is a useful warm-up exercise, and curves also play an important
role in surface theory. So we will start with the study of curves, and show that we can find
some quantities (the curvature and torsion) which completely describe each curve up to
rotations, reflections and translations in Euclidean space.

1.1. Smooth Paths and Regular Paths.

Definition 1.1. A smooth path in space is a smooth vector-valued function p : I → R3,
where I ⊂ R is an interval of positive length. We will call its image in space its track.
We say the function p parameterises the track. We can write this parameterisation in
standard coordinates as p(t) = (x(t), y(t), z(t)).

(i) By a smooth function we mean one we can differentiate as often as we like. To
be precise, one whose r-th derivative exists for all r ∈ N; synonyms are infinitely
differentiable, or C∞-smooth.

(ii) The interval I need not be open. If not, then the understanding is that p(t) is
defined and smooth on some open interval containing I. The interval I need not
be finite.

For p(t) = (x(t), y(t), z(t)) the derivative will be written as

dp

dt
=
(dx
dt
,
dy

dt
,
dz

dt

)
, or p′(t) =

(
x′(t), y′(t), z′(t)

)
.

This is usually visualised, and referred to, as the tangent vector. It is also known as the
velocity vector, thinking of p(t) as the position of a moving particle at time t.

0

p(t)

p′(t)

Figure 2. Position vector and tangent/velocity vector.

Example 1.1 (Helix). Define

p(t) = (a cos t, a sin t, bt), where a, b > 0. (1.1)

This path describes a right-handed helix on the cylinder x2 + y2 = a2. The number 2πb
is called the pitch of the helix. The tangent vector is:

p′(t) = (−a sin t, a cos t, b),
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x

y

z

t

2πb = pitch

Figure 3. The right-handed helix.

which has constant length
√
a2 + b2. Notice that the tangents describe a circle lying in a

horizontal plane.1

It is very important to realise that smoothness is a property of the parametrisation,
and not necessarily a property of its track. In particular, the tangent line to the track
need not be well-defined for a smooth path: this can only happen when p′(t) vanishes at
the corresponding point. Also, the track of a smooth path can be self-intersecting. The
following examples illustrate these points.

Example 1.2. For any k ∈ R define a smooth path pk(t) as follows2:

pk(t) = (t3 + kt, t2 + k, 0), t ∈ R. (1.2)

Since x(t) = ty(t) the track of pk(t) can be described as

{(x, y, 0) : x2 = y2(y − k)}.
Each pk(t) is clearly a smooth planar path (lying in the plane z = 0), with tangent vectors

p′k(t) = (3t2 + k, 2t, 0).

Since this is a planar curve we can assign to each point pk(t) the slope of the tangent line,
which is 2t/(3t2 + k).

This example demonstrates three different types of behaviour, dependent on the sign of
k. We can examine these by considering k = −1, 0, 1.

For k = 1, p1(t) parameterises an embedded cubic. Its path is one-to-one (injective)
and the slope of its tangent line at p1(t) is a smooth function.

For k = 0 the path p0(t) is one-to-one but the slope of its tangent line is 2/3t, which
has a discontinuity at p0(0) = (0, 0): this gives the curve a cusp, and it is known as a
cuspidal cubic.

For k = −1 there is a point of self-intersection, since p−1(1) = p−1(−1) = (0, 0). At this
point the tangent line is not well-defined, since the two tangent vectors (2,±2, 0) are not

1In general the path p′(t) is called the hodograph of p(t).
2These are historically known, perhaps confusingly for our modern terminology, as Newton’s diverg-

ing parabolas. Newton classified cubic equations of the form y2 = ax3 + bx2 + cx + d by distinguishing
them into four classes, allowing linear transformations of x: the diverging parabolas form the third class.



DIFFERENTIAL GEOMETRY 5

parallel. This family of curves are known as nodal cubics: each has a node or ordinary
double point at the origin. But the tangent vector of the path is well-defined, since these
tangents occur at different times t = ±1.

x

y

x

y

x

y

Figure 4. From left to right, embedded, cuspidal and nodal cubics.

These examples make clear the need to distinguish those smooth paths whose tangent
vectors do not vanish at any point.

Definition 1.2. Let p : I → R3 be a smooth path. We say a parameter value t0 ∈ I is:

(i) singular or critical if p′(t0) = 0, in which case p = p(t0) is a singular or
critical point, and;

(ii) regular if it is not singular, in which case p is a regular point.

A smooth path is regular if all its points are regular.

In particular, by this definition whenever p(t) has a point p of self-intersection, this is
only a regular point if each of the parameter values t0 for which p(t0) = p is regular. It is
still possible for regular curves to have multiple tangent lines at one point, but regularity
only allows this to happen at point of self-intersection. For example, it can be shown that
the cuspidal cubic in Example 1.2 does not admit any regular parametrisation about its
cusp, but the nodal cubic is a regular path.

1.2. Smooth Curves and Arc Length Parametrisation. Any smooth path p(t) has
many different reparametrisations, defined as follows.

Definition 1.3. If p : I → R3 and q : J → R3 are smooth paths for which q(u) = p(t(u)),
u ∈ J , for some smooth change of variable function t(u) : J → I with t′(u) 6= 0 then we
say that q(u) is a reparametrisation of p(t). When t′(u) > 0 (resp. t′(u) < 0) we say u
is an orientation preserving (resp. orientation reversing) reparametrisation.

Remark 1.1. We want the reparametrisation function u(t) to be a smooth bijection u : I →
J , with smooth inverse. This will follow if its derivative is not allowed to vanish, for then
it is either a strictly increasing function (when u′(t) > 0) or strictly decreasing function
(when u′(t) < 0). In particular, a reparametrisation cannot “double back” on itself.

Both smooth paths p, q will have the same track. By the chain rule

dq

du
=
dt

du

dp

dt
,
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so that the condition t′(u) 6= 0 is necessary and sufficient to allow the parametrisation to
be inverted, i.e., we can write p(t) = q(u(t)). We can see from this that an orientation
preserving reparametrisation moves us in the same direction along the curve, whereas an
orientation reversing reparametrisation reverses the direction of travel. Notice that p(t)
will be a regular path if and only if q(u) is a regular path, since |q′(u)| = |t′(u)||p′(t)|.

Our definition for a smooth curve intends to get at the geometric object which remains
unchanged by reparametrisation: this is slightly more subtle than than the idea of the
track.

Definition 1.4. A smooth curve (resp. oriented smooth curve) C is an equivalence
class of smooth paths any two of which are equal after reparametrisation (resp. orientation
preserving reparametrisation). Paths in the equivalence class are said to parameterise
C. A smooth curve is regular if one, and hence all, its parametrisations are regular. If
C is an oriented curve with parametrisation p(t) then its opposite is the curve −C with
parametrisation p(−t).

Remark 1.2. What is the difference between a curve and its track? Clearly every curve
determines a single track, but there are many examples of tracks which come from two
different curves. One of the simplest examples is as follows. Let

p : [0, 2π)→ R3, p(u) = (cos(u), sin(u), 0),

q : [0, 2π)→ R3, q(t) = (cos(2t), sin(2t), 0).

Both curves have the unit circle in the plane z = 0 as their track. The curve p winds once
around this circle, whereas the curve q winds twice around. There is no reparametrisation
u : [0, 2π) → [0, 2π) for which q(t) = p(u(t)), because u is invertible (by the previous
remark) and p is invertible, but q is not injective. [You might think that u(t) = 2t should
work, but it doesn’t map [0, 2π) to itself.]

There are a particular collection of (re)parametrisations which are geometrically mean-
ingful, corresponding to the arc length along the curve from a chosen initial point and in a
chosen direction along the path. Recall from Vector Calculus the definition of arc length.

Definition 1.5. Let p : I → R3 be a smooth path. The (oriented) arc length from p(t0)
to p(t) is defined to be

s(t, t0) =

∫ t

t0

|p′(u)| du, t0, t ∈ I. (1.3)

Note that s(t, t0) < 0 if t < t0. By the Fundamental Theorem of Calculus, this is a
differentiable function of t, with derivative

ds

dt
= |p′(t)|. (1.4)

Definition 1.6. We say p(t) is arc length parameterised (and t is an arc length
parametrisation) whenever s(t, t0) = t − t0, or equivalently, when |p′(t)| = 1. For the
latter reason, this is also referred to as a unit speed parametrisation, and T (t) = p′(t)
is called the unit tangent vector field along p(t).
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It seems geometrically obvious that the track of any smooth curve should admit an arc
length parametrisation. However, we can only ensure that this is smooth when the arc
length function is smooth, and therefore we must avoid paths which have |p′(t)| = 0 at
some point (because f(x) = |x| is smooth everywhere except at x = 0, where it is not even
differentiable).

Lemma 1.7. Let p(t) be a regular path. Then p can be reparameterised by arc length s(t)
to obtain a regular path p̃(s) for which

dp̃

ds
=

p′(t)

|p′(t)|
.

Proof. The expression above is a consequence of the chain rule mentioned above, since

dt

ds
= 1

/
ds

dt
=

1

|p′(t)|
,

and we have just seen that this is smooth whenever |p′(t)| does not vanish, i.e., at all
regular points. �

Example 1.3. Consider the helix p(t) = (a cos t, a sin t, bt) with a, b ∈ R. Then

p′(t) = (−a sin t, a cos t, b), |p′(t)|2 = a2 + b2.

The arc length from p(0) to p(t) is therefore

s(t, 0) =

∫ t

0

√
a2 + b2 du = ct, where c =

√
a2 + b2.

It follows that t(s) = s/c and an arc length reparametrisation is therefore

p̃(s) =
(
a cos(s/c), a sin(s/c), bs/c

)
.

We will reserve the symbol s to denote arc length parametrisations. Such a parametri-
sation is not unique for a given regular curve C, but can only be changed by translation
of s or a change of orientation.

Theorem 1.8. Suppose p(s) and p̃(σ) are both arc length parametrisations of the same
curve C. Then

σ = ±s+ c, from some c ∈ R.

Proof. Since p̃(σ) and p(s) are unit speed parameterisations,

|p̃′(σ)| = 1, |p′(s)| = 1.

Since these parameterise the same curve, we can write p(s) = p̃(σ(s)). Using the chain
rule gives

1 = |p′(s)| = |p̃′(σ)σ′(s)| = |p̃′(σ)||σ′(s)| = |σ′(s)|.
Thus σ′(s) = ±1, whence σ(s) = ±s+ c for some constant of integration c. �

It follows that a smooth regular oriented curve has precisely one unit speed tangent
vector field along it.
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1.3. Curvature and torsion. Intuitively, the curvature of a space curve C is its rate of
change of direction. Since rate of change is measured by the derivative, and direction is
measure by the unit tangent vector, we measure curvature by taking the derivative of the
unit tangent vector, i.e., the second derivative of the unit speed parameterised path.

Definition 1.9. Let C be a regular smooth curve, and p(s) an arc length parametrisation
with unit speed tangent vector field T (s) = p′(s). We call

k(s) = T ′(s) = p′′(s)

the curvature vector of p(s) and

κ(s) = |k(s)| = |p′′(s)| ≥ 0

the curvature.

Note that

k •T = p′′ • p′ = 1
2
(p′ • p′)′ = 0.

Since the length of T is constant, as s varies only the direction of T changes. Thus the

T (s)

k(s)

Figure 5. The curvature and unit tangent vectors.

magnitude of k = T ′ does indeed measure the rate of change of the curve’s direction.

Example 1.4. Let a,b ∈ R3, with b of unit length. Then the path p(s) = a + sb is an arc
length parametrisation of the straight line through a in direction b. Clearly all straight
lines may be parameterised in this way. Then:

p′(s) = b, p′′(s) = 0,

so κ(s) = 0 for all s, as we would expect. Conversely, if the curvature is identically zero
then p′′(s) = 0 for all s, and two integrations yield p(s) = a + sb. Hence a curve has zero
curvature if and only if it is a straight line.

Provided κ(s) 6= 0 the two vectors T (s),k(s) span a plane, called the osculating plane
at the point p(s) on the curve. The torsion measures the extent to which the curve
twists out of this plane. To define torsion we proceed as follows.

Definition 1.10. Let p(s) be an arc length parameterised curve. We say a point p(s0) is
a point of inflection when κ(s0) = 0. When p(s) has no points of infection we define:
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• the principal normal vector

N(s) =
k(s)

|k(s)|
=

k(s)

κ(s)
=
T ′(s)

κ(s)
=

p′′(s)

|p′′(s)|
,

• the binormal vector

B(s) = T (s)×N(s). (1.5)

At each point p(s) on the curve the vectors T (s), N(s), B(s) form a positively oriented
orthonormal basis for R3, called the Frenet frame.

T (s)

N(s)

B(s)

Figure 6. The Frenet frame.

Differentiating B •B = 1 and (1.5) gives two identities:

B′ •B = 0, B′ = (T ′ ×N) + (T ×N ′) = T ×N ′, (1.6)

using the fact that T ′ and N are parallel. Hence B′ is orthogonal to T and B, which means
it is parallel to N .

Definition 1.11. The torsion τ(s) is the function for which B′(s) = τ(s)N(s). Equally,
τ = B′ •N .

Recall that κ(s) = |p′′(s)|. Combining the definition of τ with (1.6), we have

τ = B′ •N = (T ×N ′) •N = [T,N ′, N ], the triple scalar product,

= −[T,N,N ′],

using the antisymmetric property of the triple scalar product. Now

T = p′, N =
1

κ
T ′ =

1

κ
p′′, N ′ =

1

κ2
(κp′′′ − p′′κ′).

Therefore in arc length parametrisation

τ(s) = − 1

κ(s)2
[p′(s), p′′(s), p′′′(s)] = − [p′(s), p′′(s), p′′′(s)]

|p′′(s)|2
. (1.7)

Remark 1.3. We will be using the triple scalar product quite a lot. Notice our notation:
for any three vectors a,b, c ∈ R3 we set

[a,b, c] = (a× b) • c = det(a b c),

where the last expression is the determinant of the 3 × 3 matrix with columns a,b, c.
Recall from Linear Algebra that this makes [a,b, c] linear in each slot, and it is totally
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skew symmetric (swapping any two vectors changes the sign). Two important facts follow
from this: (i) it is zero when any two entries are equal, (ii) its value is unchanged by any
cyclic permutation of entries. Its geometric meaning is linked to this. When a,b, c form a
right-handed basis (not necessarily orthogonal) [a,b, c] is the volume of the parallelopiped
generated by these three vectors.

Example 1.5 (Curvature and torsion of helices). From our previous work with helices, a
unit speed parametrisation is

p(s) = (a cos(s/c), a sin(s/c), bs/c), where c =
√
a2 + b2

Hence

p′(s) = (−a
c

sin(s/c),
a

c
cos(s/c),

b

c
),

p′′(s) = − a
c2

(cos(s/c), sin(a/c), 0),

p′′′(s) =
a

c3
(sin(s/c),− cos(a/c), 0),

and

[p′, p′′, p′′′](s) =
ba2

c6
(cos2(s/c) + sin2(s/c)) =

ba2

c6
.

Hence

k(s) = p′′(s) =
(
− a
c2

cos
(s
c

)
,− a

c2
sin
(s
c

)
, 0
)
,

κ(s) =
|a|
c2

=
|a|

a2 + b2
,

τ(s) = − c
4

a2
a2b

c6
= − b

c2
.

So a helix has constant curvature and constant torsion (in fact we will see later that a
curve with such properties must be a helix). Notice that the torsion is negative since this
helix is right-handed. Taking b = 0 gives a circle of radius a > 0, with κ(s) = 1/a and
torsion τ = 0. Thus the curvature of a circle is the reciprocal of its radius.

1.3.1. Planar curves. We say a curve p(s) is planar if it lies in a fixed plane in R3. Thus
p(s) is planar when there is a point p ∈ R3 a non-zero vector n ∈ R3 for which

(p(s)− p) •n = 0,

i.e., p(s) lies in the plane through p with normal n. By differentiating this equation twice
we see that for a planar curve without points of inflection

p′(s) •n = 0 = p′′(s) •n, i.e., T •n = 0 = N •n.

Thus p(s) is planar if and only if the osculating plane spanned by T (s) and N(s) is constant.
This is equivalent to saying that the binormal B is constant. Conversely, suppose the
binormal B is constant, then for any choice of point p = p(s0) on the curve

((p(s)− p) •B)′ = p′(s) •B = T •B = 0,
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thus (p(s)−p) •B) is a constant function of s. But it vanishes at s = s0, so (p(s)−p) •B =
0, i.e., p(s) is a planar curve. We have therefore proved:

Theorem 1.12. A curve without inflections is planar if and only if it has constant binormal
vector, that is, if and only if its torsion τ is identically zero all along the curve.

A plane Π ⊂ R3 is oriented by making a choice of (constant) unit normal vector ξ. For
a smooth curve in the oriented plane (Π, ξ) we can talk about the signed curvature. Given
T (s) = p′(s) and ξ, the vector ν(s) = ξ × T (s) is a unit vector normal to both T (s) and
ξ, chosen so that (T, ν, ξ) is positively oriented. It follows that N = ±ν(s). The signed
curvature is defined to be

κs(s) = k(s) • ν(s) = k(s) • (ξ × T (s)) = [k(s), ξ, T (s)]. (1.8)

Thus κs = ±κ, with the sign determined by N • ν. Notice that (T,N,B) = (T, ν, ξ)
precisely when N = ν.

1.3.2. Curvature and torsion in any regular parametrisation. Since it is not usually prac-
tical to find the arc length parametrisation of a curve, we now derive the expressions for
curvature and torsion in any regular parametrisation.

Theorem 1.13. If p(t) is a regular parametrisation of a space curve then the curvature
vector and curvature are given by:

k =
1

|p′|2

(
p′′ − p′′ • p′

|p′|2
p′
)

κ =
|p′ × p′′|
|p′|3

(1.9)

Further, when p(t) has no inflection points it has torsion

τ = − 1

κ2
[p′, p′′, p′′′]

|p′|6
= − [p′, p′′, p′′′]

|p′ × p′′|2
(1.10)

Proof. Define p̃(s) = p(t(s)), so that dp̃/ds = p′(t(s))/|p′(t(s))|. By the chain rule we have

d

ds
=
dt

ds

d

dt
=

1

ds/dt

d

dt
=

1

|p′(t)|
d

dt
.

Combining this with the definition of k, we get

k =
d2p̃

ds2
=

1

|p′(t)|
d

dt

(
p′(t)

|p′(t)|

)
.

Now note that

d

dt
|p′(t)| = d

dt

(
p′(t) • p′(t)

)1/2
=

2p′(t) • p′′(t)

2(p′(t) • p′(t))1/2
=
p′(t) • p′′(t)

|p′(t)|
.
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Hence, by the quotient rule,

k =
1

|p′|

(
1

|p′|
p′′ − p′ • p′′

|p′|3
p′
)

=
1

|p′|2

(
p′′ − p′ • p′′

|p′|2
p′
)

=
|p′|2p′′ − (p′ • p′′)p′

|p′|4
.

Then

κ2 = |k|2 =

(
|p′|2p′′ − (p′ • p′′)p′

|p′|4

)
•

(
|p′|2p′′ − (p′ • p′′)p′

|p′|4

)
=
|p′|4|p′′|2 − 2|p′|2(p′ • p′′)2 + (p′ • p′′)2|p′|2

|p′|8

=
|p′|2 |p′′|2 − (p′ • p′′)2

|p′|6
=
|p′ × p′′|2

|p′|6
,

by Lagrange’s formula (1.11) below. Now from (1.7)

τ(t(s)) =
−1

κ(s)2
[
p̃′(s), p̃′′(s), p̃′′′(s)

]
=
−1

κ2

[ p′
|p′|

,
p′′

|p′|2
− p′ • p′′

|p′|4
p′, p̃′′′(s)

]
=

[ p′
|p′|

,
p′′

|p′|2
, p̃′′′(s)

]
,

where we have used the expression for k = p̃′′(s) above and the fact that triple scalar
product is linear in each term and vanishes when two vectors are parallel. Now p̃′′′(s) is
of the form ap′(t) + bp′′(t) + cp′′′(t), and so for the same reason only the term cp′′′(t) is
required. Now it is easy to see that

cp′′′ =
1

|p′|2
d

ds
p′′ =

1

|p′|2
(
p′′′
dt

ds

)
=

p′′′

|p′|3
.

�

Remark 1.4. For any a,b ∈ R3 we have:

|a× b|2 = |a|2|b|2 sin2 θ = |a|2|b|2(1− cos2 θ) = |a|2|b|2 − (a •b)2. (1.11)

This is sometimes called Lagrange’s formula, and can be used to evaluate κ without
having to compute the vector product.

Example 1.6. Consider the path p(t) = (t, 1√
2
t2, 1

3
t3), t ∈ R, which is a type of Veronese

curve. We have

p′(t) = (1,
√

2t, t2), |p′(t)| =
√

1 + 2t2 + t4 = 1 + t2.
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Therefore this is not in arc length parameterisation, but it is regular since |p′(t)| 6= 0 for
all t. Therefore to calculate its curvature and torsion we should use Theorem 1.13. For
this we need

p′′(t) = (0,
√

2, 2t), p′′′(t) = (0, 0, 2).

To get κ(t) we first calculate, using Lagrange’s formula,

|p′ × p′′|2 = |p′|2|p′′|2 − (p′ • p′′)2

= (1 + t2)2(2 + 4t2)− (2t+ 2t3)2

= 2(1 + t2)2[1 + 2t2 − 2t2] = 2(1 + t2)2

Therefore

κ(t) =

√
2

(1 + t2)2
.

For the torsion, we compute first

[p′, p′′, p′′′] =

∣∣∣∣∣∣
1
√

2t t2

0
√

2 2t
0 0 2

∣∣∣∣∣∣ = 2
√

2.

Therefore

τ(t) = −
√

2

(1 + t2)2
.

So this curve has τ = −κ.

Remark 1.5. It is interesting to note that there is a vector triple product expression for
the curvature vector:

k =
1

|p′|4
(p′ × p′′)× p′.

This comes from the general expression

(a× b)× a = |a|2b− (a •b)a, a,b ∈ R3.

This is probably not so useful for calculation as the formula above, but it is more mem-
orable, and the expression for κ follows very easily from it. Since p′ × p′′ and p′ are
orthogonal, |(p′ × p′′)× p′| is the area of a rectangle with sides p′ × p′′ and p′, i.e., its area
is |p′ × p′′||p′|. Thus |k| = |p′ × p′′|/|p′|3.

1.4. Congruence and Frenet formulas. Our aim now is to show that the curvature
and torsion of a curve determine it completely up to rotations and translations. These
transformations generate the group of orientation preserving Euclidean motions.
We start with a short discussion of Euclidean motions.

Definition 1.14. A transformation E : R3 → R3 is called a Euclidean motion (or
isometry) when it preserves distances and angles, i.e.,

(Ep2 − Ep1) • (Eq2 − Eq1) = (p2 − p1) • (q2 − q1), ∀ p1,p2,q1,q2 ∈ R3. (1.12)
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It can be shown that all Euclidean motions must have the form Ev = Lv + c, where
L : R3 → R3 is an invertible linear map, and c is a constant vector. It follows that the set
of Euclidean motions is a group (under composition of transformations). The condition
(1.12) amounts to the condition

Lv •Lw = v •w, ∀ v,w ∈ R3.

This implies that L must represented by an orthogonal matrix, i.e, LLt = I3, the 3× 3
identity matrix. It follows from this that det(L)2 = 1, since det(Lt) = det(L), and therefore
det(L) = ±1. L is a rotation about the origin when det(L) = 1. When det(L) = −1 it is
a reflection through some plane containing the origin combined with a rotation about the
axis normal to that plane. Thus every Euclidean motion is the composition of a rotation
or reflection with a translation.

Definition 1.15. We say the Euclidean motion Ev = Lv+c is orientation preserving
when det(L) = 1, equally, when

[Le1, Le2, Le3] = [e1, e2, e3]

where e1, e2, e3 is the standard orthonormal basis for R3. Otherwise it is called orienta-
tion reversing.

Definition 1.16. We will say two space curves p, q : [a, b] → R3 are congruent when
there is a Euclidean motion E for which (E ◦ p)(t) = q(t) for all t ∈ [a, b], and we will say
they are properly congruent when E is also orientation preserving.

Remark 1.6. The set of all 3 × 3 orthogonal matrices is denoted by O(3). This forms a
group under matrix multiplication, which is called the orthogonal group. The subset of
those matrices which also have determinant 1 is denoted by SO(3). It is a subgroup, called
the special orthogonal (sub)group. Thus SO(3) represents the group of all rotations of
R3. Notice that the set {L ∈ O(3) : det(L) = −1} does not form a subgroup of O(3) (since
it doesn’t contain the identity transformation), but that the product of any two of these
transformations is a rotation.

These orthogonal transformations L ∈ O(3) can be understood by considering their
eigenvalues and eigenvectors. We need two facts. First, the eigenvalues of L are roots of
the characteristic polynomial det(L−λI), which is a cubic polynomial with real coefficients
when L ∈ O(3). Therefore there is always one real eigenvalue. The other two eigenvalues
either have to be both real, or complex conjugates. Second, the eigenvalues satisfy |λ| = 1.
Therefore each real eigenvalue is ±1. So we can can always write the eigenvalues of L as
±1, eiθ, e−iθ for some 0 ≤ θ ≤ 2π. The case +1 gives a rotation through angle θ about the
axis which is the eigenline for eigenvalue +1. The case −1 gives a reflection through the
plane normal to the eigenline for eigenvalue −1, combined with a rotation through angle
θ about that axis.

The Frenet (sometimes called Frenet-Serret) formulas tell us how to rebuild a curve
from its curvature and torsion, up to rotations and translations in space. They show how
the Frenet frame can be obtained from a system of linear differential equations whose data
is the curvature and torsion of the curve. These are derived as follows.
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Let p(s) be a unit speed path. By definition of the principal normal and binormal

T ′ = κN, B′ = τN.

Since |N | = 1 we have N ′ •N = 0, so

N ′ = αT + βB,

for some scalar functions α, β. Since N •T = 0 = N •B it follows that

α = N ′ •T = −N •T ′ = −κ, β = N ′ •B = −N •B′ = −τ,
and we thereby obtain the Frenet formulas.

T ′ = κN, N ′ = −κT − τB B′ = τN. (1.13)

Remark 1.7. Another way to derive the expression for N ′ is to use the fact that N = B×T
(since T,N,B is a right handed orthonormal frame). Differentiating this gives

N ′ =B′ × T +B × T ′

=τN × T + κB ×N
=− τB − κT.

It is useful to write (1.13) in matrix form

(
T ′ N ′ B′

)
=
(
T N B

)0 −κ 0
κ 0 τ
0 −τ 0

 . (1.14)

We can simplify this notationally into F ′ = FA where F is the matrix representing the
Frenet frame and A is the skew-symmetric matrix (i.e., At = −A) containing the curvature
and torsion. Notice that F is a special orthogonal matrix, since its columns come from
an orthonormal basis with right-handed orientation. We should think of (1.13), equally
(1.14), as a linear system of ordinary differential equations for the vector-valued functions
T (s), N(s), B(s) given the functions κ(s) and τ(s). Using this perspective we can prove
the following theorem.

Fundamental Theorem of Space Curves. (i) Let p, p̂ : I → R3 be unit speed paths
with curvatures κ̂(s) = κ(s) 6= 0 and torsions τ̂(s) = τ(s) for all s ∈ I. Then p and p̂ are
properly congruent. Moreover, if κ̂(s) = κ(s) 6= 0 and τ̂(s) = −τ(s) for all s ∈ I then p
and p̂ are congruent but not properly congruent.

(ii) Let κ, τ : I → R be smooth functions, with κ > 0. There these exists a smooth unit
speed path p : I → R3 with curvature κ and torsion τ , and p is determined uniquely up to
proper congruence.

We will not study the proof in detail: the interested Reader can find it in the appendix.
Nevertheless, we can understand why the pair (κ, τ) only determines the curve up to
proper congruence. The proof is based on the existence and uniqueness of solutions to the
Frenet equations (1.13). In the construction of a path p from κ, τ , there are “constants
of integration” chosen at two steps: first, the solution to F ′ = FA requires an initial
condition F (t0) ∈ SO(3), and second, F (t) provides the tangent T = p′ from which p(t) is
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obtained by integration. This requires another initial condition p(t0). These choices will,
respectively, rotate and translate the path.

Example 1.7. Let us now show that a curve is a helix if and only if it has constant curvature
κ > 0 and constant torsion τ . Example 1.5 gave an arc length parameterised helix with
curvature and torsion

κ(s) =
|a|

a2 + b2
, τ(s) = − b

a2 + b2
,

for arbitrary constants a, b ∈ R. Conversely, given constants κ > 0 and τ we can find
a, b ∈ R satisfying these equations. To be precise,

|a| = κ

κ2 + τ 2
, b = − τ

κ2 + τ 2
.

Thus every choice of constants κ > 0 and τ has a helix with those values for curvature and
torsion. By the Fundamental Theorem any path with that curvature and torsion is a helix
(congruent to the standard form given in Example 1.5).
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2. Smooth Surfaces and their Calculus.

Our aim is to adapt vector calculus to work on smooth surfaces, but before we can do
that we need to define the notion of a smooth surface itself. From a vector calculus
course we expect that this idea should include two common types of construction.

Level surfaces. For a differentiable function f : R3 → R for each k ∈ R the set

Sk = {(x, y, z) : f(x, y, z) = k}
is usually called the level set at level k. For example, the sphere of radius r > 0 is the level
surface

S2(r) = {(x, y, z) : x2 + y2 + z2 = r2}.
For simplicity the unit sphere S2(1) is usually denoted by S2. This definition also gives a
non-empty set when r = 0, but that set is {0}, the single point set containing the origin.
It would be absurd to call this a surface, so not every level set Sk gives a surface. Notice
that the problem with S2(0) is that it has the wrong dimension: a surface ought to be
two-dimensional.

A second family of examples turns up another reason for caution. Consider the level sets

Sk = {(x, y, z) : x2 + y2 − z2 = k}.
For k < 0 these are the hyperboloids of one sheet, while for k > 0 we get the hy-
perboloids of two sheets. In between these cases lies the cone S0. This looks two
dimensional at almost every point except the origin, where its tangent plane fails to be
well-defined. Our definition will exclude S0 from being a smooth surface for this reason.

Later, the Regular Value Theorem will give us sufficient conditions for a level set to be
a surface.

Parametric Surfaces. Another common construction of surfaces is to describe them using
the two dimensional version of the parametrisation of a curve, in the form

S = {p(u, v) = (x(u, v), y(u, v), z(u, v)) : (u, v) ∈ U ⊂ R2}
For example, the map p : R2 → R3 given by

p(u, v) = (cosu cos v, sinu cos v, sin v),

has image S2, i.e., this is a parametrisation of S2. It is clearly not injective, since it is
made from periodic functions. By restricting the domain it can be made injective, but to
make it simultaneously surjective we have to carefully choose the domain. For example,
the domain

D = {(0, v) : −π/2 ≤ v ≤ π/2} ∪ {(u, v) : 0 < u < 2π, −π/2 < v < π/2},
will make p : D → S2 bijective.

A good parametrisation ought not the have redundant variables. For example, the map
p(u, v) = (u, 0, 0) doesn’t really depend upon v, and its image is clearly not a surface. We
will see later that what makes for a good parametrisation of a surface is the independence
of the vectors of partial derivatives pu = ∂p/∂u and pv = ∂p/∂v at each point. This also
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indicates the two dimensional nature of a proper surface: these two vectors should span
the tangent plane.

2.1. Fundamental Concepts.

Definition 2.1. If a ∈ Rn, r > 0, then:

Br(a) = {x ∈ Rn : |x− a| < r},
is the open ball of radius r and centre a. Of course:

|x− a| =
√

(x1 − a1)2 + · · ·+ (xn − an)2.

A subset U ⊂ Rn is open if for each a ∈ U there exists r > 0 such that Br(a) ⊂ U . A
subset E ⊂ Rn is closed if its complement E ′ is open.

An open set containing a ∈ Rn is called a neighbourhood of a.

Remark 2.1. These ideas come from topology (the so-called standard topology of Rn),
but we do not need to study topology to understand them in our context. An important
observation is that when we use standard inclusions like R ⊂ R2, x→ (x, y), open sets are
never mapped to open sets, since every open interval (a, b) ⊂ R is mapped to the subset

{(x, y) : a < x < b, y = 0} ⊂ R2,

which is neither open nor closed3. Thus the notion of “open” is dimension dependent, as
the definition indicates.

A function f : U → Rm on an open set U ⊂ Rn will be called smooth at a ∈ U if for
every k ∈ N all k-th order partial derivatives of f exist in a neighbourhood of a and are
continuous at a, and f is smooth on U if f is smooth at all a ∈ U .

Definition 2.2. Suppose U1 ⊂ Rn and U2 ⊂ Rm are open subsets. A smooth function
f : U1 → U2 is said to be a diffeomorphism if f is invertible and the inverse function
f−1 : U2 → U1 is smooth. In this case U1 and U2 are said to be diffeomorphic open sets.

One of our main tasks will be to adapt the idea of a smooth map to non-open subsets
of R3 (because surfaces, being two dimensional, are never open subsets of R3). We achieve
this using the following idea.

Definition 2.3. Suppose f : D → Rm with D ⊂ Rn and a ∈ D. If V is a neighbourhood
of a and f̃ : V → Rm satisfies:

f̃(x) = f(x), for all x ∈ V ∩D,

then f̃ is called a local extension of f at a.

The idea now is that a function on a not-necessarily-open subset D ⊂ Rn will be smooth
if it admits about each point a local extension which is smooth. From this we can extend
the notion of diffeomorphism.

3Use the definition to convince yourself that this set is not open and its complement is also not open.
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Definition 2.4. Function f : D → Rm is smooth at a ∈ D if there exists a local extension
of f at a which is smooth at a. If f is smooth at all a ∈ D then f is smooth on D.

Let D1 ⊂ Rn and D2 ⊂ Rm be subsets which are not necessarily open. A function
f : D1 → D2 is smooth if it is smooth as a function into Rm. Given this, a smooth
function f : D1 → D2 is a diffeomorphism if f is invertible and f−1 : D2 → D1 is
smooth. Then D1 is said to be diffeomorphic to D2, written D1

∼= D2.

It is easy to see that diffeomorphism is an equivalence relation. To proceed further with
differential geometry, and develop our understanding of when two sets are diffeomorphic,
we have to recall the notion of the total derivative from vector calculus.

Definition 2.5. For a smooth map f : U → Rm defined on an open set U ⊂ Rn its
differential or total derivative at a ∈ U is the linear map

df(a) : Rn → Rm; df(a)[h] =
d

dt
f(a + th)

∣∣∣
t=0
.

The matrix which represents this linear map (using the canonical bases of Rn and Rm) is
the Jacobian matrix Jf (a), the m×n matrix whose ij-th entry is the partial derivative:

Djfi(a) =
∂fi
∂xj

(a).

Remark 2.2. Recall that the vector df(a)[h] gives the directional derivative of f in the
direction h. When f : Rn → R is a scalar function then the 1×3 matrix Jf is also denoted
by ∇f , the gradient vector of f :

∇f(p) =
(∂f
∂x

∣∣∣
p
,
∂f

∂y

∣∣∣
p
,
∂f

∂z

∣∣∣
p

)
= (fx(p), fy(p), fz(p)).

Then, if h = (h1, h2, h3) we have:

df(p)[h] = fx(p)h1 + fy(p)h2 + fz(p)h3 = ∇f(p) •h.

We recall also the vector calculus version of the chain rule.

Theorem 2.6 (Chain Rule). Suppose we have a “chain” of maps:

Rn f→ Rm g→ Rp,

satisfying the following conditions:

• f is smooth at a ∈ Rn (thus df(a) : Rn → Rm exists).
• g is smooth at b = f(a) ∈ Rm (thus dg(b) : Rm → Rp exists).

Then g ◦ f : Rn → Rp is smooth at a, and:

d(g ◦ f)(a) = dg(b) ◦ df(a)

From the chain rule we can immediately derive a necessary condition for a smooth map
f : U → V , between open subset U ⊂ Rn and V ⊂ Rm, to be a diffeomorphism. For this
necessarily requires

f−1 ◦ f = idU , f ◦ f−1 = idV ,
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the identity maps on U and V respectively. Since f and f−1 are both smooth the chain
rule implies that

df−1(b) ◦ df(a) = idRn , df(a) ◦ df−1(b) = idRm .

This means the linear map df(a) has both a left and right inverse. Thus n = m and df(a)
must be invertible; equally, a linear isomorphism (in particular, diffeomorphic sets must
have the same dimension). It turns out that this condition is also sufficient locally. That is
the content of the Inverse Function Theorem, whose proof belongs in a course on calculus
of several variables (see, for example, [Bartle]). So we will simply state it and make use of
it without further comment.

Inverse Function Theorem. Let U ⊂ Rn be open, and let f : U → Rn be smooth at
a ∈ U . Suppose that df(a) : Rn → Rn is an isomorphism. Then there exist neighbourhoods
A of a and B of b = f(a) such that f : A→ B is a smooth diffeomorphism. Furthermore:

df−1(b) = (df(a))−1

2.2. Charts, Atlases and Surfaces. Our definition of a surface will essentially say that
about each point the surface has a patch which is diffeomorphic to an open subset of R2,
together with a requirement that this patch sits well in R3. The next two definitions make
this precise.

Definition 2.7. A (smooth) surface patch is a subset D ⊂ R3 together with a diffeo-
morphism ϕ : D → U to an open subset U ⊂ R2.

Definition 2.8 (Smooth surface). Let S ⊂ R3. A chart on S is a surface patch (D,ϕ)
where D = S ∩ V for some open subset V ⊂ R3. The chart map ϕ : D → U ⊂ R2 is also
referred to as local coordinates on D, and its inverse

p = ϕ−1 : U → D ⊂ S,

is called a local parametrisation.
If each point of S lies in a chart then S is called a smooth surface. A collection of

charts whose union is S is called an atlas for S.

As the example of the sphere above shows, it would be too restrictive to insist that the
whole of a surface can be covered by one chart, since many surfaces are not diffeomorphic
to an open subset of R2.

Example 2.1 (Graphs). Let f : U → R be a smooth function, where U ⊂ R2 is open, and
let Sf ⊂ R3 to be its graph:

Sf = {(u, v, f(u, v)) : (u, v) ∈ U}.
Figure 7 gives a visualisation of this. We claim that Sf is a surface patch, and therefore
a surface. For, if we define ϕ(u, v, f(u, v)) = (u, v) then ϕ : Sf → R2 is smooth: it has
smooth extension ϕ̃ : R3 → R2 given by the projection onto the plane ϕ̃(x, y, z) = (x, y). Its
inverse is p : R2 → Sf , p(u, v) = (u, v, f(u, v)), which is also smooth since each component
is a smooth function of u, v. Thus (Sf , ϕ) is a global chart for Sf .
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U

Sf

u

v

Figure 7. Graph of a function of two variables.

Example 2.2 (Sphere: hemispherical charts). We can use graphs to put an atlas on the
unit sphere S2. Take D = {(x, y, z) ∈ S2 : z > 0}. Then D = Sf , where f(u, v) =

Figure 8. Northern hemisphere of the unit sphere.√
1− (u2 + v2), defined on the open disc U = {(u, v) ∈ R2 : u2+v2 < 1}. So D is a surface

patch by the previous example. Furthermore D = S2 ∩ V where V = {(x, y, z) : z > 0} is
the open upper half space; so D is a chart of S. We can use 6 hemispherical charts like this
(or 4, if we want to be economical) to make an atlas for S2. Thus S2 is a smooth surface.

Example 2.3 (Sphere: spherical polar charts). Every point on S2 has equatorial spherical
polar coordinates, which are obtained from the inverse of the parametrisation seen earlier:

p(u, v) = (cosu cos v, sinu cos v, sin v).

If we restrict this to the open subset

U = {(u, v) : 0 < u < 2π, −π/2 < v < π/2} = (0, 2π)× (−π/2, π/2) ⊂ R2,

we obtain a smooth bijection p : U → S2 \ C, where C ⊂ S2

C = {(x, 0, z) ∈ S2 : x ≥ 0},
is the “Greenwich meridian”. See Figure 9. Let D = S2 \ C. The inverse of p is the map
ϕ : D → U which gives coordinates (u, v) to p(u, v). These can be interpreted geometrically
as the longitude and latitude relative to C. To show that (D,ϕ) is a chart it suffices to
show that ϕ is smooth (since we know it has smooth inverse p). Its smooth local extension
is given by

ϕ̃ : V → R3; (x, y, z) 7→
(
θ(x, y), arcsin(z)

)
,

where V = {(x, y, z) : |z| < 1} \ {(x, 0, z) : x ≥ 0 and θ(x, y) is the polar angle of the point
(x, y) ∈ R2. Therefore D is a surface patch. Finally, D = S2 ∩ V , so D is a chart. It may
be combined with one other similar chart to obtain an atlas.
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Figure 9. Longitude and latitude on the sphere.

2.3. Tangent Spaces.

Definition 2.9. For a smooth surface S, p ∈ S, the tangent space to S at p is the set

TpS = {c′(0) ∈ R3 : c(t) is a smooth curve on S with c(0) = p}.
We will call the elements of TpS tangent vectors, although this definition puts them at

the origin 0 ∈ R3. We will use the phrase tangent plane to refer to the parallel plane
parallel to TpS through p, i.e., p + TpS.

Theorem 2.10. TpS ⊂ R3 is a two dimensional vector space.

Proof. Choose a chart (D,ϕ) about p, with local parametrisation p : U → D about
a = ϕ(p) ∈ U . We claim dp(a) : R2 → R3 is injective with image TpS. That it is
injective follows at once from the existence of a local smooth extension ϕ̃ of ϕ about p,
since ϕ̃ ◦ p = idU , the identity map on U , therefore by the chain rule

dϕ̃(p) ◦ dp(a) = idR2 ,

so that dp(a) must have trivial kernel. To see that the image is TpS we argue as follows.

(i) First, im dp(a) ⊂ TpS. For if h ∈ R2 then γ(t) = a + th lies in U for t small, so
p ◦ γ lies on S. Thus

dp(a)[h] = (p ◦ γ)′(0) ∈ TpS.
(ii) Next, TpS ⊂ im dp(a), for if X ∈ TpS then X = c′(0) for some smooth curve c(t)

in S with c(0) = p. Now (ϕ ◦ c)(t) is a smooth curve in R2. Define h = (ϕ ◦ c)′(0),
and observe that

X = (p ◦ ϕ ◦ c)′(0) = dp(a)[(ϕ ◦ c)′(0)] = dp(a)[h] ∈ im dp(a).

�

Remark 2.3. When S has local parametrisation p : U → S, for which p(a) = p for some
a ∈ U , we can write p(u, v) = (x(u, v), y(u, v), z(u, v)). The coordinate lines through a
in U are given by γ(t) = a + te1 and δ(t) = a + te2, for e1 = (1, 0), e2 = (0, 1). Since
γ′(0) = e1 and δ′(0) = e2 we have

∂p

∂u
(a) = dp(a)[e1] = (p ◦ γ)′(0),
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∂p

∂v
(a) = dp(a)[e2] = (p ◦ δ)′(0),

Since dp(a) is injective these span TpS. Thus

TpS = Sp{pu(a), pv(a)}.

2.4. The Regular Value Theorem. Recall that for any smooth function f : R3 → R its
level sets are the subsets of R3 of the form

Sk = {(x, y, z) : f(x, y, z) = k}, k ∈ R.

Definition 2.11. Let V ⊂ R3 be an open set and f : V → R a smooth function. We say
that:

(i) p ∈ V is a critical point of f if df(p) = 0, the zero linear map R3 → R,
(ii) p is a regular point of f if p is not a critical point,

(iii) k is a critical value of f if k = f(p) for some critical point p ∈ V ,
(iv) k is a regular value of f if k is not a critical value.

Remark 2.4.

(i) Since df(p)[h] = ∇f(p) •h, p is a critical point if and only if ∇f(p) = 0, and a
regular point if and only if ∇f(p) 6= 0.

(ii) If Sk = ∅ then k is a regular value of f . For, if not then Sk contains a critical
point. Thus, for example, −1 is a regular value of f(x, y, z) = x2 + y2 + z2.

(iii) If k is a regular value of f then all points of Sk are regular points; however if k is
a critical value then at least one point of Sk is a critical point.

Example 2.4. Suppose f : R3 → R, f(x, y, z) = x2 + y2 − z2. Then ∇f = (2x, 2y,−2z), so
the only critical point is (0, 0, 0) and the corresponding critical value is f(0, 0, 0) = 0. The
level set S0 is the cone x2 + y2 − z2 = 0, but notice that even though it corresponds to a
critical value most of the points on S0 are regular points (in fact, every point except the
origin 0 - the ‘cone point’).

But suppose we take the same function restricted to V = R3 \{0}. Then ∇f = 0 has no
solution in V , so every point in V is a regular point and every value is a regular value for
this domain - including 0! In this case S0 is a disjoint union of two punctured half cones.

With the definitions above in hand, we can now state the Regular Value Theorem. The
proof would take us more time than we have, and so it has been placed in Appendix B.

Regular Value Theorem. Suppose V ⊂ R3 is open, and f : V → R is a smooth function.
If k ∈ R is a regular value of f , and the level set Sk = {p ∈ V : f(p) = k} is non-empty,
then Sk is a smooth surface. Furthermore TpSk = ker df(p) for all p ∈ Sk; equivalently

TpSk = ∇f(p)⊥ := {v ∈ R3 : ∇f(p) •v = 0}.

If∇f(p) = (a, b, c) then the last part says TpS is the plane with equation ax+by+cz = 0.

Example 2.5. From the previous example, for f : R3 → R, f(x, y, z) = x2 + y2− z2, by the
Regular Value Theorem every level set Sk for k 6= 0 is a smooth surface: it is easy to see
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these are non-empty, since (
√
k, 0, 0) ∈ Sk for k > 0, while (0, 0,

√
−k) ∈ Sk for k < 0. We

get the hyperboloids of one sheet for k > 0 and the hyperboloids of two sheets for k < 0.
The cone S0 is not a smooth surface, but S0 \ {0} (the cone minus its cone point) is a
smooth surface: it is the zero level set for f : V → R with V = R3 \ {0}.

As an example of finding the tangent space, consider p = (1, 0, 0) ∈ S1. Then ∇f(p) =
(2, 0, 0) so TpS is the plane x = 0.

2.5. Maps between Surfaces. Let f : S1 → S2 be a smooth map between two smooth
surfaces. For any p ∈ S1 and X ∈ TpS1 we have X = c′(0) for some smooth curve c(t) on
S1, and (f ◦ c)(t) is a smooth curve on S2. Therefore

df(p)[X] = (f ◦ c)′(0) ∈ Tf(p)S2.

Therefore the following definition makes sense.

Definition 2.12. For a smooth map f : S1 → S2 between two smooth surfaces the differ-
ential of f at p is the linear map

df(p) : TpS1 → Tf(p)S2; df(p)[X] = (f ◦ c)′(0),

where c(t) is any smooth curve on S1 with c(0) = p and c′(0) = X.

Remark 2.5.

(i) Since every smooth map f : S1 → S2 is, by definition, smooth as a map f : S1 →
R3, it follows immediately that this differential is a linear map.

(ii) Recall that if p(u, v), p : U → S1, is a local parametrisation about p (p(a) = p
for some a ∈ U ⊂ R2) then TpS1 = Sp{pu(a), pv(a)}. Now for a smooth map
f : S1 → S2 between two smooth surfaces, and with γ(t) = a + te1, δ(t) = a + te2

on U , we have

df(p)[pu(a)] = (f ◦ p ◦ γ)′(0) = (f ◦ p)u(a),

df(p)[pv(a)] = (f ◦ p ◦ δ)′(0) = (f ◦ p)v(a).

This gives us a way of calculating df in the local coordinate expression f(p(u, v)).
For if X ∈ TpS1 then X = Xupu(a) + Xvpv(a) for coefficients Xu, Xv ∈ R, and
then by linearity

df(p)[X] = Xudf(p)[pu(a)] +Xvdf(p)[pv(a)] = Xu(f ◦ p)u(a) +Xv(f ◦ p)u(a). (2.1)

Removing the clutter of notation labelling points, we can simplify this:

df [X] = Xu(f ◦ p)u +Xv(f ◦ p)v. (2.2)

(iii) When f̃ is a local smooth extension for f about p and X ∈ TpS1 is tangent to the
smooth curve c(t) on S1, we have

df̃(p)[X] = (f̃ ◦ c)′(0) = (f ◦ c)′(0) = df(p)[X].

This gives us a way of calculating df given a local smooth extension for f .
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Lemma 2.13 (Chain Rule for Surface Maps). Let f : S1 → S2 and g : S2 → S3 be two
smooth maps between smooth surfaces, and let p ∈ S1 with q = f(p). Then g ◦f : S1 → S3

is smooth with differential at p given by

d(g ◦ f)(p) = dg(q) ◦ df(p) : TpS1 → Tg(q)S3.

The proof is a trivial application of the usual chain rule for maps in R3, given that f
and g both have local smooth extensions into R3.

Corollary 2.14. Suppose f : S1 → S2 is a diffeomorphism of surfaces. Then at every
p ∈ S1 the differential df(p) : TpS1 → Tf(p)S2 is a linear isomorphism, with inverse
df−1(f(p)).

This follows immediately from the chain rule applied to f−1 ◦ f = idS1 . The more
interesting fact is that the Inverse Function Theorem can also be adapted to maps between
surfaces. For the statement of this we need to adapt the notion of a local diffeomorphism.

Definition 2.15. A smooth map f : S1 → S2 is a local diffeomorphism at p ∈ S1 if
the differential df(p) : TpS1 → Tf(p)S2 is a linear isomorphism. We say f : S1 → S2 is a
local diffeomorphism when it is a local diffeomorphism about each point.

Theorem 2.16 (Inverse Function Theorem for Surface Maps.). A smooth map f : S1 → S2

is a local diffeomorphism at p if and only if there exist chart domains D1 ⊂ S1 containing
p and D2 ⊂ S2 containing f(p) such that f : D1 → D2 is a diffeomorphism.

Proof. This is simply a consequence of the standard Inverse Function Theorem 2.1, applied
to a local representative F of f at p. This means the following. Let (ϕ1, D1) be a chart
on S1 about p, and (ϕ2, D2) be a chart about f(p) on S2. We will denote the corresponding
inverses (local parametrisations) by pj : Uj → Dj. Now define F : U1 → U2 to be the
composition F = ϕ2 ◦ f ◦ p1;

U1
p1→ D1

f→ D2
ϕ2→ U2.

Then if ϕ1(p) = a ∈ U1 and q = f(p) it follows from the Chain Rule (for Surfaces) that:

dF (a) = dϕ2(q) ◦ df(p) ◦ dp1(a).

Now all three linear maps on the right hand side are isomorphisms, so dF (a) : R2 → R2

must also be one. Therefore by the Inverse Function Theorem there exists a neighbourhood
W1 ⊂ U1 of a such that the restriction of F to W1 is a diffeomorphism. By reducing the
size of the chart domains D1, D2 if necessary (so that D1 = p1(W1), D2 = f ◦ p1(W1), we
have a diffeomorphism F : W1 → W2. It follows that the restriction of f to D1 is

f = p2 ◦ F ◦ ϕ1 : D1 → D2,

which is a composite of diffeomorphisms, and therefore a diffeomorphism. �

Notice what this theorem says: if the differential df(p) is invertible at each p then
locally f possesses an inverse, but this need not mean f itself is invertible. The following
example demonstrates this point.
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Example 2.6. Let S1 ⊂ R3 be the plane z = 0 and S2 be the cylinder {(x, y, z) : x2+z2 = 1}.
The map

f : S1 → S2; f(x, y, 0) = (cos(x), y, sin(x)),

wraps the plane S1 around the cylinder S2 infinitely many times, so it is not injective and
cannot have an inverse. It is plainly smooth and at each p = (x, y, 0) clearly TpS1 is the
subspace of R3 with equation z = 0. S1 can be globally parameterised by p(u, v) = (u, v, 0),
for which

(f ◦ p)u = (− sin(u), 0, cos(u)), (f ◦ p)v = (0, 1, 0).

These are linearly independent at every point p(u, v), therefore

df(p)[X] = Xu(− sin(u), 0, cos(u)) +Xv(0, 1, 0) = (−Xu sin(u), Xv, Xu cos(u)),

has trivial kernel. So by Theorem 2.16 f is locally invertible.



DIFFERENTIAL GEOMETRY 27

3. The Geometry of Smooth Surfaces.

Throughout this chapter S will be a smooth surface in R3.

3.1. The Riemannian Metric. Euclidean space R3 comes equipped with a canonical
inner product: the dot product. Since each tangent space TpS ⊂ R3 is a vector subspace
each inherits this inner product:

〈X, Y 〉p = X •Y, X, Y ∈ TpS ⊂ R3. (3.1)

Recall that the defining properties of an inner product are

〈X, Y 〉 = 〈Y,X〉
〈aX + bY, Z〉 = a〈X,Z〉+ b〈Y, Z〉, a, b,∈ R

〈X,X〉 > 0, ∀ X 6= 0.

The first two say that 〈 , 〉 is a symmetric bilinear form, and the third one says it is
positive definite.

Definition 3.1. The first fundamental form of a smooth surface S ⊂ R3 is the inner
product (3.1) induced on each tangent space TpS by the dot product in R3. This is also
called the induced Riemannian metric.

We should keep in mind that the first fundamental form is a family of inner products,
one for each tangent space. In modern language it is an example of a tensor on S. When
we want to emphasise that we are making a calculation at a particular point p we can
write 〈 , 〉p.

We can express the information carried by the Riemannian metric in coordinates. Let
p : U → S be a local parametrisation corresponding to a coordinate chart ϕ : D → U on
S. Recall that at each p = p(a) we have TpS = Sp{pu(a), pv(a)}. Thus X, Y ∈ TpS can
be expressed in this basis as

X = Xupu +Xvpv, Y = Y upu + Y vpv,

where Xu, Xv, Y u, Y v ∈ R are the components of X, Y in these coordinates. Then

〈X, Y 〉 = 〈Xupu +Xvpv, Y
upu + Y vpv〉

= XuY u |pu|2 + (XuY v +XvY u)〈 pu, pv〉+XvY v |pv|2

=
(
Xu Xv

)( |pu|2 〈 pu, pv〉
〈 pv, pu〉 |pv|2

)(
Y u

Y v

)
.

Notice that this is nothing other than the usual process for expressing an inner product as
a matrix using a basis for the vector space. The matrix will, of course, be symmetric and
positive definite.

Following the terminology due to Gauss himself we define the components of this matrix
to be

E = |pu|2 = pu • pu, F = 〈 pu, pv〉 = pu • pv, G = |pv|2 = pv • pv.
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These are called the components of the Riemannian metric in the given chart. With this
notation (

Xu Xv
)(E F

F G

)(
Y u

Y v

)
. (3.2)

N.B. Notice that as we move though the chart domain D = p(U), E,F,G will be functions
of (u, v). If we choose another parametrisation then we should expect all the components
E,F,G (and Xu, Xv, Y u, Y v) to be different, but the quantity 〈X, Y 〉 is geometric and will
not change.

Since pu, pv are the tangent vectors along the coordinate curves through the chart domain
D = p(U) we make the following definitions.

Definition 3.2. We say a coordinate parametrisation p(u, v) is orthogonal when F (u, v) =
〈pu, pv〉 = 0 throughout U . We say these coordinates are isothermal (or conformal)
when additionally E(u, v) = G(u, v) throughout U , and orthonormal when we also have
E = G = 1.

These are properties of the coordinates, not the Riemannian metric.

Example 3.1 (Planes). Let S be an arbitrary plane in R3, containing the point b ∈ R3 and
with normal n ∈ R3. For any two linearly independent X, Y ∈ R3 with X •n = 0 = Y •n
we can parameterise S by

p(u, v) = b + uX + vY, u, v ∈ R2.

Clearly pu = X and pv = Y so in this parametrisation the Riemannian metric has compo-
nents

E = |X|2, F = X •Y, G = |Y |2.
The coordinate system (u, v) will therefore be orthogonal precisely when X, Y are orthog-
onal, isothermal when X, Y are orthogonal and have the same length, and orthonormal
when X, Y are orthonormal.

Example 3.2 (Cylinder). We can parameterise part of the cylinder S = {(x, y, z) : x2+z2 =
1} by

p(u, v) = (cos(u), v, sin(u)); −π < u < π, v ∈ R.
In this case

pu = (− sin(u), 0, cos(u)), pv = (0, 1, 0),

so that the Riemannian metric components are

E = |pu|2 = sin2(u) + cos2(u) = 1, F = pu • pv = 0, G = |pv|2 = 1.

So these coordinates on the cylinder are also orthonormal.

Example 3.3 (Helicoid). The helicoid may be defined parametrically as follows:

S = {p(u, v) = (u cos v, u sin v, av) : u, v ∈ R},
where a 6= 0 is constant. In this parametrisation

pu = (cos v, sin v, 0), pv = (−u sin v, u cos v, a),
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so that

E = cos2 v + sin2 v = 1, F = 0, G = u2(sin2 v + cos2 v) + a2 = u2 + a2.

So this is an orthogonal coordinate system on the helicoid which is not isothermal: see
Figure 10.

Figure 10. Orthogonal coordinate curves on a helicoid.

3.2. Lengths and Areas. The Riemannian metric provides all the information required
to calculate the arc length of curves on the surface S, or the area of bounded regions on S.

Lengths of curves. Let c : [a, b] → S be a smooth curve, and suppose it lies entirely in
a chart domain (D,ϕ). In this chart c(t) has coordinates (u(t), v(t)) = ϕ(c(t)), equally,
c(t) = p(u(t), v(t)). Therefore

dc

dt
=
∂p

∂u

du

dt
+
∂p

∂v

dv

dt
= u′pu + v′pv.

Therefore

|c′|2 = E.(u′)2 + 2Fu′v′ +G.(v′)2 = 〈c′, c′〉.
Of course, this is just the expression (3.2) for the squared length of the tangent vector c′

and only involves the Riemannian metric. It follows that the arc length of c is

s(a, b) =

∫ b

a

|c′(t)|dt =

∫ b

a

√
E.(u′)2 + 2Fu′v′ +G.(v′)2dt. (3.3)

In case c(t) does not lie inside one coordinate domain, we can break c into a finite number
of segments each of which lies in some coordinate domain, and add the arc lengths of each
segment.

Remark 3.1. This is the origin of the classical (and still quite commonly used) expression
for the Riemannian metric:

ds2 = Edu2 + 2Fdudv +Gdv2,

sometimes referred to as “the element of arc length”. This has the virtue that it makes
clear the role of E,F,G as coordinate dependent components of a symmetric bilinear form.
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Areas. We can compute the area of any region R ⊂ S which is the image of a region
Q ⊂ U ⊂ R2, by some local parametrisation p : U → S, over which integration in the
plane is well-defined4. For in that case standard vector calculus tells us that

Area(R) =

∫∫
Q

|pu × pv|du dv =

∫∫
Q

√
EG− F 2 du dv. (3.4)

using Lagrange’s formula |pu × pv|2 = |pu|2|pv|2 − (pu • pv)
2. As with arc length, the “ele-

ment of surface area”
√
EG− F 2 du dv is a coordinate invariant quantity even though the

function
√
EG− F 2 may change.

3.3. Isometries and Local Isometries. Recall that a smooth map f : S → S̄ between
smooth surfaces S and S̄ is said to be a local diffeomorphism at p ∈ S if df(p) : TpS →
Tf(p)S̄ is a linear isomorphism.

Definition 3.3. A smooth map f : S → S̄ is said to be a local isometry at p ∈ S if
df(p) : TpS → Tf(p)S̄ is a linear isometry of vector spaces:〈

df(p)[X], df(p)[Y ]
〉

= 〈X, Y 〉, ∀X, Y ∈ TpS. (3.5)

Alternatively, we say that f preserves the first fundamental forms of S and S̄.

Remark 3.2. It suffices to check equation (3.5) on all pairs of vectors in a basis of TpS. In
particular, if df(p) maps an orthonormal basis of TpS to an orthonormal basis of Tf(p)S̄
then df(p) is a linear isometry, and conversely. It follows that a linear isometry is a linear
isomorphism. Hence if f is a local isometry at p then f is a local diffeomorphism at p.

Definition 3.4. We say that f is a local isometry if f is a local isometry at each point.
If in addition f is a diffeomorphism then f is called an isometry and S, S̄ are said to be
isometric.

The relation of being isometric is an equivalence relation on the set of all smooth surfaces.
The relationship between these different types of map may be summarised by the following
diagram:

Isometry ⇒ Diffeomorphism
⇓ ⇓

Local isometry ⇒ Local diffeomorphism

Example 3.4. In example 2.6 we showed that the plane S with equation z = 0 and the
cylinder S̄ with equation x2 + z2 = 1 are locally diffeomorphic, but not diffeomorphic.
Recall we used the map

f : S → S̄; f(x, y, 0) = (cos x, y, sinx).

We will show that this is a local isometry. In terms of the global parametrisation p(u, v) =
(u, v, 0) on S we have:

pu = (1, 0, 0), pv = (0, 1, 0),

4For technical reasons, we stick to regions which are the closure of bounded open sets whose boundary
is a finite union of piecewise continuous curves.
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So this is an orthonormal basis for Tp(u,v)S. Now

df [pu] =
∂

∂u
f(p(u, v)) = (− sinu, 0, cosu), df [pv] =

∂

∂v
f(p(u, v)) = (0, 1, 0),

which is an orthonormal basis of Tf(p(u,v))S̄. Thus df maps an orthonormal basis to an
orthonormal basis, hence f is a local isometry. However, f is cannot be an isometry
because it is not a diffeomorphism.

We can check whether a map is a local isometry by looking at how it relates the com-
ponents E,F,G on S with the components Ē, F̄ , Ḡ on S̄, but since these components are
calculated in charts we need to first ensure that we are making the calculation in compatible
charts. The correct notion for compatibility is given by the next definition.

Definition 3.5. Suppose f : S → S̄ is smooth. Parametrisations p : U → S and p̄ : U → S̄
are said to be f-adapted if p̄ = f ◦p. Equally, local charts (ϕ,D) and (ϕ̄, D̄) are f -adapted
when ϕ(D) = ϕ̄(D̄) and ϕ̄ ◦ f = ϕ on D.

Notice that since both ϕ and ϕ̄ are diffeomorphisms the only way they can be f -adapted
is if f : D → D̄ is a diffeomorphism.

With this notion of f -adapted parametrisations we have the following useful result.

Lemma 3.6 (E,F,G Lemma). Suppose f : S → S̄ is smooth. Then f is a local isometry
at p ∈ S if and only if there exist f -adapted parametrisations (p, U) about p = p(a) and
(p̄, U) about f(p) = p̄(a) such that

(Ē, F̄ , Ḡ) = (E,F,G), at a.

Proof. For f -adapted parametrisations we have

p̄u = (f ◦ p)u = df [pu], p̄v = (f ◦ p)v = df [pv].

Hence

Ē = |p̄u|2 = |df [pu]|2, F̄ = 〈p̄u, p̄v〉 = 〈df [pu], df [pv]〉, Ḡ = |p̄v|2 = |df [pv]|2.

Write X1 = pu(a) and X2 = pv(a), where a = ϕ(p). Then

(Ē, F̄ , Ḡ) = (E,F,G) at ϕ(p)

⇐⇒
〈
df(p)[Xi], df(p)[Xj]

〉
= 〈Xi, Xj〉, i, j = 1, 2

⇐⇒ df(p) is a linear isometry

⇐⇒ f is a local isometry at p.

It remains to show that if f is a local isometry at p then f -adapted charts exist. Since f
is a local diffeomorphism at p we can find charts D about p and D̄ about f(p) such that
f : D → D̄ is a diffeomorphism, by the Inverse Function Theorem for surfaces. If the chart
map for D is ϕ : D → U , redefine the chart map for D̄ by ϕ̄ : D̄ → U ; ϕ̄ = ϕ ◦ f−1. Then
ϕ̄ is smooth (by the Chain Rule for surfaces), and invertible with inverse p̄ = f ◦ p also
smooth; hence ϕ̄ is indeed a chart map for D̄. �
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3.4. The Shape Operator. At each point on a smooth surface S we have a choice of
two unit normal vectors. In any coordinate chart it is always possible to smoothly assign
a unit normal to each point, using the local parametrisation p : U → S as follows:

ξ(p(a)) =
pu(a)× pv(a)

|pu(a)× pv(a)|
, a ∈ U.

We say that the coordinates give an orientation to S in D = p(U). For some surfaces it
is not possible to extend such an orientation smoothly to the whole surface: the Möbius
band is one example.

Definition 3.7. A smooth surface S is said to be orientable if there exists a smooth
unit normal field on S, i.e., a smooth function ξ : S → R3 satisfying for all p ∈ S:

ξ(p) ⊥ TpS and |ξ(p)| = 1.

If S is orientable then there are precisely two smooth unit normal fields, choice of either
of which constitutes an orientation of S. An oriented surface is an orientable surface
together with an orientation.

Example 3.5. Every smooth level surface Sk = {(x, y, z) : F (x, y, z) = k}, for a regular
value k, is orientable by the unit normal obtained from ∇F :

ξ(p) =
∇F (p)

|∇F (p)|
.

Definition 3.8. For a smooth oriented surface S the chosen unit normal field, thought of
as a surface map ξ : S → S2, is called the Gauss map.

S

ξ

S2

p

ξ(p)
ξ(p)

Figure 11. The Gauss map

The differential dξ(p) of the unit normal field measures the rate of turning of the tangent
plane TpS as p moves along S. It is a linear map dξ(p) : TpS → Tξ(p)S

2, but we know
that

Tξ(p)S
2 = ξ(p)⊥ = TpS. (3.6)

Using this identification we regard this differential as a linear map from TpS to itself:

dξ(p) : TpS → TpS.



DIFFERENTIAL GEOMETRY 33

Definition 3.9. The shape operator (or Weingarten map) of S at p is the linear
map/operator:

Ap : TpS → TpS; Ap = −dξ(p).

We often abbreviate Ap = A when the point p ∈ S is understood, or to indicate the family
of maps, one at each point.

Notice that choosing the opposite orientation, −ξ, changes the sign of the shape operator:
A 7→ −A.

Example 3.6 (Plane). Whichever orientation is selected, ξ is constant and hence dξ(p) = 0
(the zero map TpS → R3) for all p ∈ S. Thus A(X) = 0 for all X ∈ TpS.

Example 3.7 (Sphere). Let S be the sphere of radius R centred at the origin, and choose
ξ(p) = p/R for all p ∈ S, which is the outward-pointing unit normal. Then:

dξ(p)[X] = ξ(X) = X/R, for all X ∈ TpS,

because ξ is the restriction of the linear map v 7→ v/R on R3. Thus A(X) = (−1/R)X
for all tangent vectors X.

Recall from Linear Algebra that a linear map A : V → V on an inner product space
(V, 〈 , 〉) is self-adjoint when

〈AX, Y 〉 = 〈X,AY 〉, ∀ X, Y ∈ V.

Recall also that this means A is represented by a symmetric matrix when any basis of V is
chosen. In particular, V has an orthonormal basis of eigenvectors of A which diagonalises
A, and the eigenvalues are all real.

Lemma 3.10 (Shape Lemma). For any smooth surface S, the shape operator Ap is a
self-adjoint operator on TpS, for all p ∈ S.

Proof. Since A is a linear operator, it suffices to establish its symmetry on a basis (X1, X2)
of TpS. Clearly 〈A(Xi), Xi〉 = 〈Xi, A(Xi)〉, so it suffices to show:

〈A(X1), X2〉 = 〈X1, A(X2)〉.

For this, we choose a chart about p and take the basis X1 = pu and X2 = pv. Then

A(X1) = −dξ(p)[ pu] = −(ξ ◦ p)u, A(X2) = −dξ(p)[ pv] = −(ξ ◦ p)v.

Thus

〈A(X1), X2〉 = −(ξ ◦ p)u • pv = (ξ ◦ p) • pvu,
where pvu = ∂2p/∂u∂v. The last equality follows from (ξ ◦ p) • pv = 0, by differentiation
with respect to u. Now swapping u with v in the previous calculation gives

〈A(X2), X1〉 = −(ξ ◦ p)v • pu = (ξ ◦ p) • puv.

Since puv = pvu we have shown that 〈A(X1), X2〉 = 〈A(X2), X1〉. �
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Example 3.8 (Paraboloids). For each r ∈ R we define a smooth function fr : R2 → R by:

fr(x, y) = x2 + ry2.

Let Sr be the graph of fr. Then Sr is a smooth surface, with a global chart. The intersection
of Sr with any vertical plane is a parabola. If r > 0 (resp. r < 0) then the level curves of fr
are ellipses (resp. hyperbolas). Consequently Sr is called an elliptic (resp. hyperbolic)
paraboloid. The hyperbolic paraboloid is the archetypal saddle surface. When r = 0 the
surface is a parabolic cylinder: The paraboloid Sr may also be viewed as the level set

r > 0 r < 0

Figure 12. Elliptic and hyperbolic paraboloids; parabolic cylinder.

of the smooth function:

Fr(x, y, z) = z − x2 − ry2,
corresponding to the regular value 0 ∈ R. We give Sr the induced orientation:

ξ(x, y, z) =
∇Fr(x, y, z)

|∇Fr(x, y, z)|
=

(−2x,−2ry, 1)√
4x2 + 4r2y2 + 1

.

Let p = (0, 0, 0), the unique point in common to all the Sr. Since ∇Fr(p) = (0, 0, 1) the
tangent space TpSr is the plane z = 0. We will compute the matrix which represents the
shape operator of Sr at p by choosing the (orthonormal) basis X1 = (1, 0, 0), X2 = (0, 1, 0)
for TpSr.

For this we must find curves c1(t), c2(t) on Sr with cj(0) = p and c′j(0) = Xj. We can
take

c1(t) = (t, 0, t2), c2(t) = (0, t, rt2).

Now

A(Xj) = −dξ(p)[Xj] = −(ξ ◦ cj)′(0),

so

A(X1) =
d

dt
|t=0

(2t, 0,−1)√
4t2 + 1

= (2, 0, 0),

and

A(X2) =
d

dt
|t=0

(0, 2rt,−1)√
4r2t2 + 1

= (0, 2r, 0).

Then

〈A(X1), X1〉 = 2, 〈A(X1), X2〉 = 0, 〈A(X2), X2〉 = 2r.
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Thus Ap is represented by the diagonal matrix(
2 0
0 2r

)
from which it follows that X1 and X2 are eigenvectors of Ap, with corresponding eigenvalues
2 and 2r respectively.

3.5. Normal Curvature and Principal Curvatures. For a smooth surface S with unit
normal ξ(p) at p ∈ S, we say a plane Πp ⊂ R3 is a normal plane at p if Πp contains the
normal line p + tξ(p). Each normal plane intersects S along a normal section Πp ∩ S,
which is an unparameterised smooth curve on S. It is not hard to see that for every unit
tangent vector T ∈ TpS there is a normal plane Πp whose normal section is tangent to T :
simply take

Πp = {p + uT + vξ(p) : u, v ∈ R}.
As an oriented plane (with orientation T × ξ(p)), Πp is uniquely determined by the unit
tangent vector T .

It is important to realise that although Πp is a normal plane to S at p, Πp is not
necessarily normal to S at other points of Πp ∩ S. So, in general, normal sections at p
will not be normal sections at other points. For a unit tangent vector T ∈ TpS its normal

S

ξ(p)

p

Figure 13. Normal sections

section Πp ∩ S has a unique unit speed parametrisation c(t) satisfying:

c(0) = p, c′(0) = T, c(t) ∈ Πp ∩ S, |c′(t)| = 1.

Definition 3.11. We define the normal curvature of this (oriented) normal section to
be

κn(T ) = c′′(0) • ξ(p) = k • ξ(p). (3.7)

This depends only on T , since T completely determines c. It can be easily shown to
equal the signed curvature of the planar curve c(t) (i.e., as a curve in the oriented plane
Πp) since the choice of orientation makes ξ(p) the intrinsic normal for c(t).
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Lemma 3.12. Given a unit vector T ∈ TpS, the normal curvature of the normal section
through p which it determines satisfies

κn(T ) = 〈T,Ap(T )〉, (3.8)

where Ap is the shape operator on TpS.

Proof. First, c′(t) • ξ(c(t)) = 0 and therefore (by differentiation)

c′′(t) • ξ(c(t)) + c′(t) • (ξ ◦ c)′(t) = 0.

So, from the definition above, along T = c′(t),

κn(T ) = c′′(t) • ξ(c(t))

= −c′(t) • (ξ ◦ c)′(t)
= −c′(t) • dξ[c′(t)],
= 〈c′(t), A(c′(t))〉.

�

The equation (3.8) gives a geometric interpretation of the shape operator as a quadratic
form. Further, since Ap is a symmetric operator it is diagonalisable, with real eigenval-
ues κ1, κ2: there exists an orthonormal basis (Z1, Z2) of TpS for which Z1 and Z2 are
eigenvectors of Ap:

Ap(Z1) = κ1(p)Z1, Ap(Z2) = κ2(p)Z2.

Then κi = 〈Zi, A(Zi)〉 = κn(Zi).

Definition 3.13. The eigenvalues κi(p) are called the principal curvatures (of S at
p), and the unit eigenvectors ±Zi are called the principal directions (of S at p).

Remark 3.3. If the orientation of S is reversed (i.e. we choose −ξ instead of ξ) then the
shape operator changes sign and hence so do κ1 and κ2.

Theorem 3.14 (Euler). The principal curvatures (of S at p) are the maximum and min-
imum normal curvatures (of S at p).

We should keep in mind that it is possible for κ1 = κ2, in which case κn(T ) = κ1 for all
T and every direction is a principal direction.

Proof. Any unit vector T ∈ TpS may be written

T = (cos θ)Z1 + (sin θ)Z2,

for some θ ∈ [0, 2π). Then

A(T ) = (cos θ)κ1Z1 + (sin θ)κ2Z2,

so

κn(T ) = 〈T,A(T )〉 = (cos2 θ)κ1 + (sin2 θ)κ2,

from which it follows that κn always lies between κ1 and κ2. �
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Remark 3.4. Euler’s Theorem is nothing other than an application of the more general
statement that any real quadratic form q(x, y) = ax2 + 2bxy + cy2, when restricted to the
unit circle x2 + y2 = 1, takes its maximum and minimum values on the eigenvectors of the
symmetric matrix

A =

(
a b
b c

)
which corresponds to it. It is also a general fact that when A has distinct eigenvalues the
eigenvectors are orthogonal, hence for κ1 6= κ2 the principal directions are orthogonal.

3.6. Gaussian and Mean Curvatures. Given any basis E1, E2 for the tangent space
TpS the shape operator Ap is represented by a matrix A defined by the property that, for
any X = X1E1 +X2E2 ∈ TpS,

A

(
X1

X2

)
=

(
U1

U2

)
for AX = U1E1 + U2E2.

By standard linear algebra, a change of this basis E1, E2 transforms the matrix A into
P−1AP , where P is an invertible 2× 2 matrix determined by the expressions for the new
basis in terms of the old basis. The invariants of this tranformation will be geometric
information, and not basis dependent. Recall that

tr(P−1AP ) = tr(A), and det(P−1AP ) = det(A),

so these are geometric information, and depend only on the shape operator itself. Therefore
we may write these as tr(A) and det(A). Of course, we may assume A is the diagonal form,
whose diagonal entries are the principal curvatures (in any order).

Definition 3.15. The Gaussian curvature of S at p is defined to be

K(p) = det(Ap) = κ1(p)κ2(p),

and the mean curvature of S at p is defined to be

H(p) = 1
2

tr(Ap) = 1
2
(κ1(p) + κ2(p)).

The Gaussian and mean curvatures together carry all the information carried by the
principal curvature. This is because the characteristic polynomial of A (whose roots are
κ1, κ2) is

χA(λ) = λ2 − 2Hλ+K,

and therefore

κ1, κ2 = H ±
√
H2 −K. (3.9)

Notice that in particular H2 −K ≥ 0.
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3.7. Geometric classification of points on a surface. The points of S are classified
according to the relative signs of the principal curvatures. There are four mutually exclusive
classes.

Definition 3.16. We say that p ∈ S is:

• an elliptic point if κ1, κ2 are non-zero and have the same sign at p.
• a hyperbolic point if κ1, κ2 are non-zero and have opposite signs at p.
• a parabolic point if precisely one of κ1, κ2 vanishes at p.
• a planar point if κ1 = κ2 = 0 at p.

This point classification is independent of the orientation of S.
The terminology arises from the special case when S is a paraboloid. From Example

3.8, the principal curvatures of the paraboloid S = Sr at p = (0, 0, 0) are 2 and 2r; so
p is an elliptic (resp. hyperbolic) point precisely when S is an elliptic (resp. hyperbolic)
paraboloid, and p is a parabolic point if and only if S is a parabolic cylinder. The paradigm
surface for locating planar points is of course any plane, all of whose points are planar.

The geometric point classification of S may be achieved by inspecting the Gaussian and
mean curvatures:

p elliptic ⇐⇒ K(p) > 0;

p hyperbolic ⇐⇒ K(p) < 0;

p parabolic ⇐⇒ K(p) = 0, H(p) 6= 0;

p planar ⇐⇒ K(p) = 0 = H(p).

There are some additional geometric conditions which may apply at some (or all) points
p of S.

Definition 3.17. We say that p ∈ S is:

• an umbilic point if κ1(p) = κ2(p); equivalently, if H(p)2 −K(p) = 0;
• a minimal point if κ1(p) = −κ2(p); equivalently, if H(p) = 0;
• a flat point if κ1(p) = 0 or κ2(p) = 0; equivalently, if K(p) = 0.

We say that S is an umbilic (resp. minimal, resp. flat) surface if all points of S are
umbilic (resp. minimal, resp. flat).

Remark 3.5. A minimal surface gets its name from the fact that on any such surface a
small enough bounded patch of the surface minimises area amongst all surfaces with the
same boundary.

This geometric point classification can be summarised in the following table.
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Point type Principal curvatures Gaussian & mean curvatures

elliptic κ1, κ2 6= 0 have same sign K > 0

hyperbolic κ1, κ2 6= 0 have opposite signs K < 0

parabolic precisely one κi vanishes K = 0, H 6= 0

planar κ1 = 0 = κ2 K = 0 = H

flat at least one κi vanishes K = 0

umbilic κ1 = κ2 H2 −K = 0

minimal κ1 = −κ2 H = 0

Example 3.9 (Circular Cylinder). Let S be the circular cylinder with equation x2+y2 = R2,
where R > 0. Orient this by outward normal

ξ(x, y, z) =
1

R
(x, y, 0).

This is the restriction of a linear map on R3, so

Ap(X) = −dξ(p)[X] = − 1

R
(X1, X2, 0), for X = (X1, X2, X3).

Notice that Z1 = (0, 0, 1) ∈ TpS for all p ∈ S, and A(Z1) = 0, so 0 is an eigenvalue. Thus
Z1 is a principal direction, with principal curvature κ1 = 0. Since Z2 ⊥ Z1 it follows that
Z2 = (X1, X2, 0) where ξ •Z2 = xX1 + yX2 = 0. Then:

A(Z2) = − 1

R
Z2.

Hence κ2 = −1/R, so:

K = 0 and H = − 1

2R
.

Thus S is flat, but not planar.

3.8. The Second Fundamental Form. Given an oriented surface S with shape operator
A we have seen, in the Shape Lemma 3.10, that 〈X,A(Y )〉 is a symmetric bilinear form
on each tangent space.

Definition 3.18. The second fundamental form of S at p is the symmetric bilinear
form

αp : TpS × TpS → R; αp(X, Y ) = 〈X,Ap(Y )〉.

Just like the first fundamental form we can represent this by a symmetric matrix in
any coordinate chart (D,ϕ). We choose this so that its local parametrisation p = ϕ−1 is
compatible with the orientation, i.e.

ξ(p(u, v)) =
pu × pv
|pu × pv|

.
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Define:

e = α(pu, pu), f = α(pu, pv) = α(pv, pu), g = α(pv, pv),

which are called the components of the second fundamental form in the given chart.
They are analogous to the components E,F,G of the Riemannian metric. For example, if
X = Xupu +Xvpv and Y = Y upu + Y vpv then

α(X, Y ) =
(
Xu Xv

)(e f
f g

)(
Y u

Y v

)
Furthermore, e, f, g may be readily computed.

Lemma 3.19. In an orientation preserving parametrisation p : U → S the components of
the second fundamental form are given by

e =
[ pu, pv, puu]√
EG− F 2

, f =
[ pu, pv, puv]√
EG− F 2

, g =
[ pu, pv, pvv]√
EG− F 2

. (3.10)

[Recall that [u,v,w] = (u× v) •w, the scalar triple product.]

Proof. The proof is by straightforward computation, exploiting the identities

(ξ ◦ p) • pu = 0 = (ξ ◦ p) • pv.

By taking partial derivatives of these we see that

e = 〈pu, A(pu)〉 = −pu • (ξ ◦ p)u = (ξ ◦ p) • puu,
f = 〈pu, A(pv)〉 = −pu • (ξ ◦ p)v = (ξ ◦ p) • puv,
g = 〈pv, A(pv)〉 = −pv • (ξ ◦ p)v = (ξ ◦ p) • pvv.

Now (3.10) follow from the identity

ξ ◦ p =
pu × pv
|pu × pv|

=
pu × pv√
EG− F 2

,

in which we have used

|pu × pv|2 = |pu|2 |pv|2 − (pu • pv)
2 = EG− F 2.

�

The Gaussian and mean curvatures can now be directly computed from the components
of the first and second fundamental forms.

Theorem 3.20. Let S be an oriented surface whose first and second fundamental forms
have components (E,F,G) and (e, f, g) respectively in some orientation preserving coordi-
nate chart. Then the Gaussian and mean curvatures in that chart are given by

K =
eg − f 2

EG− F 2
, H =

eG− 2fF + gE

2(EG− F 2)
. (3.11)
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Proof. To compute K and H, we need the determinant and trace of A. Suppose the matrix
of A with respect to the basis (pu, pv) is(

a b
c d

)
where

A(pu) = apu + cpv,
A(pv) = bpu + dpv.

(3.12)

Then detA = ad− bc and trA = a + d. In order to express a, b, c, d in terms of e, f, g we
note that (

e f
f g

)
=

(
〈pu, A(pu)〉 〈pu, A(pv)〉
〈pv, A(pu)〉 〈pv, A(pv)〉

)
=

(
a| pu|2 + c〈 pv, pu〉 b| pu|2 + d〈 pv, pu〉
a〈 pu, pv〉+ c| pv|2 b〈 pu, pv〉+ d| pv|2

)
by (3.12)

=

(
aE + cF bE + dF
aF + cG bF + dG

)
=

(
E F
F G

)(
a b
c d

)
Therefore: (

a b
c d

)
=

(
E F
F G

)−1(
e f
f g

)
(3.13)

Note that

det

(
E F
F G

)
= EG− F 2 = |pu × pv|2 6= 0,

so the inverse matrix exists. Hence

K = detA = det

(
a b
c d

)
= det

(
e f
f g

)/
det

(
E F
F G

)
=

eg − f 2

EG− F 2

Notice that the multiplicative property of determinants allowed us to achieve this without
having to explicitly perform the matrix inversion in (3.13). However the trace is not
multiplicative, so we now need to develop (3.13)(

a b
c d

)
=

1

EG− F 2

(
G −F
−F E

)(
e f
f g

)
=

1

EG− F 2

(
eG− fF ?

? gE − fF

)
Hence

H = 1
2

trA =
a+ d

2
=
eG− 2fF + gE

2(EG− F 2)

�

3.9. Gauss’s Theorema Egregium. The classical approach to the definition of the
Gaussian curvature, given above, is via the shape operator, which measures normal curva-
tures. The normal curvatures measure extrinisic geometry of the surface: they rely on the
way the surface sits in the ambient Euclidean space. Gauss’s Theorema Egregium (“Re-
markable Theorem”) states that despite this the Gaussian curvature K = det(A) = κ1κ2
relies only on the intrinsic geometry determined by the surface’s metric.
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Theorema Egregium. Let S, S̄ be smooth surfaces with Gaussian curvatures K, K̄
respectively. If f : S → S̄ is a local isometry then K̄(f(p)) = K(p) for all p ∈ S.

Proof. Our aim is to show that K can be expressed entirely in terms of E,F,G, the
components of the metric for S, hence K̄ can be expressed entirely in terms of Ē, F̄ , Ḡ,
the components of the metric for S̄. In that case, since by the (E,F,G) Lemma 3.6 a local
isometry f : S → S̄ has the property that (E,F,G) = (Ē, F̄ , Ḡ) in f -adapted charts, it
follows that K ◦ f = K̄.

We start from the expression (3.11) for K, which we rewrite as

W 4K = [ pu, pv, puu] [ pu, pv, pvv]− [pu, pv, puv]
2,

where W =
√
EG− F 2 and we have used (3.10) for e, f, g. For any vectors a,b, c ∈ R3 we

write (a b c) for the 3× 3 matrix with columns a,b, c and note that the matrixa
b
c

 ,

with rows a,b, c, is its transpose and therefore has the same determinant. Then we can
write:

W 4K = det
(
pu pv puu

)
det
(
pu pv pvv

)
− det

(
pu pv puv

)2
= det

 pu
pv
puu

 det
(
pu pv pvv

)
− det

 pu
pv
puv

 det
(
pu pv puv

)

= det

 pu
pv
puu

(pu pv pvv
)− det

 pu
pv
puv

(pu pv puv
)

=

∣∣∣∣∣∣
E F pu • pvv
F G pv • pvv

pu • puu pv • puu puu • pvv

∣∣∣∣∣∣−
∣∣∣∣∣∣

E F pu • puv
F G pv • puv

pu • puv pv • puv |puv|2

∣∣∣∣∣∣ (3.14)

=

∣∣∣∣∣∣
E F pu • pvv
F G pv • pvv

pu • puu pv • puu puu • pvv − |puv|2

∣∣∣∣∣∣−
∣∣∣∣∣∣

E F pu • puv
F G pv • puv

pu • puv pv • puv 0

∣∣∣∣∣∣ ,
where to obtain the last line we have used the observation that both determinants in (3.14)
have the same top left hand 2×2 block and therefore it is possible to move the bottom right
hand corner element (viz. |puv|2) of the second determinant across to the first determinant.
(To see this, simply expand the determinants along their final column, or row.)
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Now we claim that all the entries involving second order derivatives of p(u, v) can be
expressed in terms of E,F,G are their derivatives. The computations are:

puu • pu = 1
2
(pu • pu)u = 1

2
Eu,

puu • pv = (pu • pv)u − pu • pvu = Fu − 1
2
(pu • pu)v = Fu − 1

2
Ev,

puv • pu = pvu • pu = 1
2
(pu • pu)v = 1

2
Ev,

puv • pv = pvu • pv = 1
2
(pv • pv)u = 1

2
Gu,

pvv • pu = (pv • pu)v − pv • puv = Fv − 1
2
(pv • pv)u = Fv − 1

2
Gu,

pvv • pv = 1
2
(pv • pv)v = 1

2
Gv.

Finally, from these it follows that

puu • pvv = (pu • pvv)u − pu • pvvu = (Fv − 1
2
Gu)u − pu • pvvu,

|puv|2 = (pu • puv)v − pu • puvv = 1
2
Evv − pu • pvvu.

The equality of the third order partial derivatives gives

puu • pvv − |puv|2 = Fuv − 1
2
Guu − 1

2
Evv.

�

Remark 3.6.

(i) This proof shows that one can write down an explicit expression for the Gaussian
curvature purely in terms of the metric components E,F,G. Such expressions
were first published by Brioschi, in 1852, 24 years after Gauss gave the first proof
of his Remarkable Theorem. Our proof follows Brioschi’s: Gauss’s is not so easy
to follow.

(ii) By contrast, the mean curvature H is not an intrinsic quantity. This follows at once
from the fact that the plane and the cylinder in Example 3.4 are local isometric
but have different mean curvatures.

3.10. Example: curvatures for the Circular Torus. We will find the Gaussian and
mean curvature of the circular torus of revolution S = T 2(a, b) where 0 < b < a. This
surface is obtained by rotating around the z-axis a circle in the y, z-plane, of radius b and
centre y = a, z = 0. The whole surface can be described using cylindrical polar coordinates
(r, θ, z), where r2 = x2 + y2, as

T (a, b) = {(r, θ, z) : (r − a)2 + z2 = b2}.
We will make our calculations using the following local parametrisation:

p(u, v) =
(

cosu(a+ b cos v), sinu(a+ b cos v), b sin v
)
, 0 < u, v < 2π.

From this we will determine the geometric point classification of S, locate special points,
and compute the principal curvatures.

We have:

pu = (a+ b cos v)(− sinu, cosu, 0), pv = b(− cosu sin v, − sinu sin v, cos v),
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and

puu = −(a+ b cos v)(cosu, sinu, 0),

puv = b sin v(sinu, − cosu, 0) = pvu,

pvv = −b(cosu cos v, sinu cos v, sin v).

Therefore

E = |pu|2 = (a+ b cos v)2, F = pu • pv = 0, G = |pv|2 = b2,

so that
√
EG− F 2 = b(a+ b cos v). Hence by (3.10)

e =
[ pu, pv, puu]√
EG− F 2

=
−b(a+ b cos v)2

b(a+ b cos v)

∣∣∣∣∣∣
− sinu ? cosu
cosu ? sinu

0 cos v 0

∣∣∣∣∣∣
= − cos v(a+ b cos v),

while

f =
[ pu, pv, puv]√
EG− F 2

= 0,

since puv and pu are linearly dependent, and

g =
[ pu, pv, pvv]√
EG− F 2

=
−b2(a+ b cos v)

b(a+ b cos v)

∣∣∣∣∣∣
− sinu − cosu sin v cosu cos v
cosu − sinu sin v sinu cos v

0 cos v sin v

∣∣∣∣∣∣
= −b

(
− cos2 v

∣∣∣∣− sinu cosu
cosu sinu

∣∣∣∣+ sin2 v

∣∣∣∣− sinu − cosu
cosu − sinu

∣∣∣∣)
= −b.

So

eg − f 2 = b cos v(a+ b cos v),

Hence by (3.11)

K =
eg − f 2

EG− F 2
=

cos v

b(a+ b cos v)

and

H =
eG− 2fF + gE

2(EG− F 2)
=
−(a+ 2b cos v)

2b(a+ b cos v)

Notice that K and H only depend on the latitude (v), as might be expected on a surface
of revolution. Notice also that a + b cos v > 0. Since K and H are smooth functions on
the whole of S, we can obtain their values at the edges of the parametrisation p(u, v) by
continuity (taking limits).

The geometric point classification of S is primarily determined by the sign of K

K > 0, if 0 ≤ v < π/2, or 3π/2 < v ≤ 2π;

K < 0, if π/2 < v < 3π/2.



DIFFERENTIAL GEOMETRY 45

Thus the “outside” of S is elliptic, whereas the “inside” is hyperbolic. Furthermore S has
flat points (K = 0) on the “top” and “bottom” circles of latitude v = π/2 and v = 3π/2.
Since H = −1/2b 6= 0 at these latitudes, points on these circles are parabolic. Of the

elliptic

hyperbolic

parabolic

Figure 14. Geometric point classification of the torus.

possible special geometric point types, minimal points occur when cos v = −a/2b, which
is only possible if b ≥ a/2. If b = a/2 the minimal points constitute the “inner equator”
(v = π) of S; otherwise they constitute the pair of latitudes v = π±arccos(a/2b), which lie
in the hyperbolic region of S. To investigate the possibility of umbilic points, we compute:

H2 −K =
a2

4b2(a+ b cos v)2
> 0.

Thus there are no umbilic points. Finally, the principal curvatures may be determined
using (3.9)

κ1, κ2 = H ±
√
H2 −K = − cos v

a+ b cos v
, −1

b
.

3.11. The Geometry of Curves on a Surface. Let c(t) be a regular smooth path in a
smooth surface S, with unit tangent vector T (t) = c′(t)/|c′(t)| ∈ Tc(t)S.

Definition 3.21 (Darboux Frame). Let ξ be the unit normal field (Gauss map) on S.
Along the curve c(t) in S we define

V (t) = ξ(c(t)), U(t) = V (t)× T (t). (3.15)

Notice that U(t) ∈ Tc(t)S. It is called the intrinsic normal to c(t). The triple of vectors
(T (t), U(t), V (t)) is a positively oriented (i.e. right-handed) orthonormal basis of R3, called
the Darboux frame along c(t).

The intrinsic normal may or may not agree with the principal normal N(t) of c(t), and
so one does not expect the Darboux frame to agree with the Frenet frame. In fact the
Darboux frame is defined at every point on c(t), including points of inflection (where N(t)
is not defined).

Recall that c(t) has curvature vector k(t) orthogonal to T (t). Therefore

k = (k •U)U + (k •V )V. (3.16)
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The second term here generalises the normal curvature of a normal section.

Definition 3.22. In the previous decomposition, the component (k •U)U is called the
geodesic curvature vector, and κg = k •U is called the geodesic curvature. If κg
vanishes identically then c(t) is called a geodesic (curve) of S.

The component (k •V )V is called the normal curvature vector, and κn = k •V
is called the normal curvature. If κn vanishes identically then c(t) is said to be an
asymptotic curve of S.

If the orientation of S is reversed then both U and V , and hence κg and κn, change sign.

Remark 3.7. Geodesics are a very important family of curves on a surface, but sadly we
don’t have time in this course to study them properly. The condition κg = 0 says that the
geodesic is doing the least amount of turning possible to stay on the surface. It turns out
that this makes geodesics locally distance minimising, i.e., given two points on a geodesic
which are close enough together, that segment of the geodesic has shortest length over all
curves on the surface with the same end points. This is the reason why they are of such
interest: they generalise the idea of a straight line to “curved” spaces.

The geodesic and normal curvatures can be explicitly calculated from the expression for
the curvature vector.

Lemma 3.23. For a curve c(t) on a surface S, not necessarily unit speed, the geodesic
curvature and normal curvature are given by

κg =
[c′, c′′, V ]

|c′|3
, κn =

c′′ •V

|c′|2
. (3.17)

Further, the curvature κ = |k| of c(t) satisfies κ2 = κ2g + κ2n.

Proof. The equation κ2 = κ2g + κ2n follows immediately from (3.16) since U, V are unit
vectors. Now we recall from earlier the expression

k =
1

|c′|2
c′′ − c′ • c′′

|c′|4
c′.

Since U = V × T and c′ × T = 0 we notice that

c′ •U = [c′, V, T ] = [V, T, c′] = 0,

Thus

κg = k •U =
1

|c′|2
[c′′, V, T ] =

1

|c′|3
[c′, c′′, V ],

since T = c′/|c′|. Similarly, c′ •V = 0 so that

κn = k •V =
1

|c′|2
c′′ •V.

�



DIFFERENTIAL GEOMETRY 47

The geodesic curvature is the amount of curvature “perceivable” in S, and geodesics are
therefore the analogues in S of straight lines in the Euclidean plane. They play an essential
rôle in any deeper investigation of the Riemannian geometry of S.

Example 3.10. Let S be the helicoid from Example 3.3, with the standard parametrisation
p(u, v) = (u cos v, u sin v, av). The u coordinate lines are the straight lines with equation,
for each v ∈ R,

cv(t) = (t cos(v), t sin(v), av).

Every point of the helicoid lies on one of these lines, so it is called a ruled surface
(and these lines are called the rulings). Since every straight line has κ = 0 it follows
immediately from κ2 = κ2g + κ2n that κg = 0 = κn for these rulings. Therefore they are
simultaneously geodesics and asymptotic curves.

Now fix u ∈ R and c(t) = (u cos t, u sin t, at) be the corresponding v-coordinate line.
This is a helix. We choose the orientation of S induced by the parametrisation, that is

ξ =
pu × pv
| pu × pv|

.

Since

pu = (cos v, sin v, 0), pv = (−u sin v, u cos v, a),

we have

pu × pv = (a sin v,−a cos v, u),

and hence:

ξ =
( a sin v√

a2 + u2
,
−a cos v√
a2 + u2

,
u√

a2 + u2

)
. (3.18)

Therefore

V (t) = ξ(c(t)) =
( a sin t√

a2 + u2
,
−a cos t√
a2 + u2

,
u√

a2 + u2

)
.

Since also

c′(t) = (−u sin t, u cos t, a), c′′(t) = (−u cos t,−u sin t, 0),

we finally compute

κn =
c′′ •V

|c′|2
= 0,

and

κg =
[c′, c′′, V ]

|c′|3
=

−u
(a2 + u2)2

∣∣∣∣∣∣
−u sin t cos t a sin t
u cos t sin t −a cos t
a 0 u

∣∣∣∣∣∣ =
u

a2 + u2
.

Thus, all the v-coordinate lines are asymptotic curves. Notice also that each one has
constant geodesic curvature, and precisely one (the axis u = 0 of the helicoid) is a geodesic
of the helicoid (of course, since it is a Euclidean straight line).
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Appendix A. Proof of the Fundamental Theorem of Space Curves.

The proof of Theorem 1.4 rests on the standard existence and uniqueness theorem for
linear ordinary differential equations, which we state here without proof.

Theorem A.1. Let A(t) be a smooth 3×3 matrix-valued function on some interval I ⊂ R,
and t0 ∈ I. Then for each x0 ∈ R3 the linear o.d.e. x′ = xA for the vector-valued function
x(t) = (x(t), y(t), z(t)) has a unique solution x(t) over t ∈ I satisfying the initial condition
x(t0) = x0.

We will make use of this in the form of the following corollary. Let M3
3 (R) denote the

set (indeed, vector space) of all 3× 3 matrices with real entries.

Corollary A.2. Let A : I →M3
3 (R) be a smooth matrix-valued function. For each invert-

ible matrix F0 ∈M3
3 (R) there exists a unique matrix-valued solution F : I →M3

3 (R) to the
o.d.e. F ′ = FA satisfying the initial condition F (t0) = F0. This solution F (t) is invertible

for all t ∈ I. If F̂ (t) is the unique solution to the same equation with initial condition

F̂ (t0) = F̂0 then F̂ = LF where L = F̂0F
−1
0 is constant.

Further, when At = −A and F0 ∈ O(3) then F (t) is an orthogonal matrix for all t ∈ I
(and F (t) is special orthogonal if F0 ∈ SO(3)).

The relationship between the Theorem and its Corollary is that the rows of F0 give
three linearly independent initial conditions x1(t0),x2(t0),x3(t0) which span R3, and the
corresponding solutions x1(t),x2(t),x3(t) must therefore span R3 at each t ∈ I. Since
x′j = xjA for each of these, the matrix F with rows x1,x2,x3 satisfies F ′ = FA and is
invertible for all time. It is called a fundamental matrix solution, since every solution
to the o.d.e. can be obtained from its rows by linear combination. Now if F̂ satisfies the
same equation with a different initial condition F̂ (t0) = F̂0, then both F−10 F and F̂−10 F̂
satisfy the equation with intial condition I3, so

F̂−10 F̂ = F−10 F, i.e., F̂ = F̂0F
−1
0 F.

To see the last part of the corollary, when At = −A it follows that

(FF t)′ = F ′F t + F (F ′)t, since (F t)′ = (F ′)t,

= FAF t + FAtF t, since (FA)t = AtF t,

= F (A+ At)F t = 0.

So FF t is constant. Thus F (t0)F (t0)
t = I3 implies FF t = I3 for all time. Hence F is an

orthogonal matrix. Now F (t) is a continuous function of t, therefore so is det(F (t)). But
det(F (t)) = ±1, so either det(F ) = 1 or det(F ) = −1 for all time. The sign is therefore
determined by the initial condition det(F0).

Proof of the Fundamental Theorem.
(i) Suppose we have two arc length parameterised space curves p, p̂ : I → R3 with the same

curvature and torsion, κ and τ . Let T,N,B and T̂ , N̂ , B̂ be their respective Frenet frames,
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with corresponding matrices F and F̂ . These are both solutions to the o.d.e. F ′ = FA
where

A =

0 −κ 0
κ 0 τ
0 −τ 0

 . (A.1)

By Corollary A.2 there is a constant matrix L for which F̂ = LF . Since F, F̂ are special
orthogonal, so is L. This means in particular that T̂ = LT . Now T = p′ and T̂ = p̂′, so

p̂(t)− p̂(t0) =

∫ t

t0

T̂ (τ)dτ =

∫ t

t0

LT (τ)dτ = L

∫ t

t0

T (τ)dτ = L(p(t)− p(t0)),

since L is constant. Therefore

p̂ = Lp+ c, c = p̂(t0)− Lp(t0).

i.e., the two paths are properly congruent.
(ii) Given smooth functions κ, τ : I → R, with κ > 0, we solve F ′ = FA for the matrix A
in (A.1). Use the columns of F to define T,N,B, then these satisfy the Frenet equations,
by construction. Now define

p(t) =

∫ t

t0

T (τ)dτ.

Then p : I → R3 is a smooth path with p′ = T , parameterised by arc length since |T | = 1,
and with normal N and binormal B, and therefore with curvature κ and torsion τ . By
part (i), any other curve with the same curvature and torsion is properly congruent to it.

Finally, let us consider the effect of an orientation reversing isometry L ∈ O(3),

det(L) = −1, on a path p. Let p̂ = Lp. Then p̂ has Frenet frame T̂ = LT , N̂ = LN , but

B̂ = −LB, since

[LT,LN,LB] = det(L)[T,N,B] = det(L) = −1.

Using the Frenet formulas this means κ̂ = κ but τ̂ = −τ . We deduce that two paths with
the same curvature but opposite torsion are still congruent, but not properly congruent.

�

Appendix B. Proof of the Regular Value Theorem.

The proof of the Regular Value Theorem rests largely on the following lemma.

Lemma B.1 (Regular Point Lemma). Suppose V ⊂ R3 is open and f : V → R is smooth
at p ∈ V . If p is a regular point of f then there exist:

• a neighbourhood A ⊂ V of p,
• an open subset B ⊂ R3,
• a smooth diffeomorphism ψ : B → A,

such that f(ψ(u, v, w)) = w for all (u, v, w) ∈ B.
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Proof. For convenience define:

π1(x, y, z) = x, π2(x, y, z) = y, π3(x, y, z) = z,

and maps Fi : R3 → R3, i = 1, 2, 3:

F1(x, y, z) =
(
f(x, y, z), y, z

)
,

F2(x, y, z) =
(
x, f(x, y, z), z

)
,

F3(x, y, z) =
(
x, y, f(x, y, z)

)
.

Thus πi ◦ Fi = f . We claim that at least one Fi is invertible on a neighbourhood of p.
First note that:

Jf (p) =
(
fx(p) fy(p) fz(p)

)
,

a 1 × 3 matrix. So, since p is a regular point, at least one of these partial derivatives is
non-zero; say fx(p). Now:

JF1(p) =

fx(p) fy(p) fz(p)
0 1 0
0 0 1


hence:

det JF1(p) = fx(p) 6= 0.

So dF1(p) is a linear isomorphism, and by the Inverse Function Theorem F1 is locally
smoothly invertible about p, with inverse F−11 : B̃ → A for some open sets A ⊂ V ,
B̃ ⊂ R3. Now let σ : R3 → R3 be the diffeomorphism which permutes coordinates in the
order σ(u, v, w) = (w, u, v), and let B = σ−1(B̃). Define ψ : B → A by ψ = F−11 ◦ σ, then

(f ◦ ψ)(u, v, w) = (π1 ◦ F1 ◦ F−11 ◦ σ)(u, v, w) = π1(w, u, v) = w.

It is easy to see how to adapt this argument to the case where only fy(p) or fz(p) is
non-zero, by replacing F1 by F2 or F3, and σ by σ2 or σ3 = id. �

Proof of the Regular Value Theorem. Given f : V → R with regular value k, every p ∈ Sk
is regular. By the Regular Point Lemma each p has an open neighbourhood A ⊂ V in
which f ◦ ψ = w in the language of that lemma. Thus

D = Sk ∩ A = {ψ(u, v, w) : w = k}.

is the domain for a chart ϕ : D → R2, ϕ(ψ(u, v, w)) = (u, v). Since every point has a chart
of this type, Sk is a smooth surface.

It remains to show that TpS = ker df(p). If X ∈ TpS then X = c′(0) for some smooth
path c(t) in S with c(0) = p. Now

df(p)[X] = (f ◦ c)′(0) = 0,

since (f ◦ c)(t) = k for all t. Thus TpS ⊂ ker df(p). Since p is a regular point, the linear
map df(p) : R3 → R has rank 1, and its kernel is therefore 2-dimensional. But TpS is also
2-dimensional. So TpS = ker df(p). By Remark 2.4(i) this equals ∇f(p)⊥. �
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Appendix C. Brioschi’s intrinsic formulae for the Gaussian curvature.

For completeness we give Brioschi’s general formulae for the Gaussian curvature.

Theorem C.1 (Brioschi). The Gauss curvature of a smooth surface may be calculated
locally using any one of the following three intrinsic ways:

2WK =
∂

∂u

(2GFv − FGv −GGu

GW

)
+

∂

∂v

(FGu −GEv
GW

)
(C.1)

2WK =
∂

∂u

(FEv − EGu

EW

)
+

∂

∂v

(2EFu − EEv − FEu
EW

)
(C.2)

2WK =
∂

∂u

(Fv −Gu + F
(

ln
√
E/G

)
v

W

)
+
∂

∂v

(Fu − Ev + F
(

ln
√
G/E

)
u

W

)
(C.3)

where W =
√
EG− F 2. If the coordinates are orthogonal (F = 0) then these reduce to the

following formula:

K = − 1

2
√
EG

(
∂

∂u

( Gu√
EG

)
+

∂

∂v

( Ev√
EG

))
. (C.4)

The aim here is to derive the formulae for the Gaussian curvature given in Theorem
C.1. Expanding the right hand side and making some initial cursory groupings of terms
produces the following:

W 4K = −1

2

(
(Evv +Guu − 2Fuv)W

2

+EuFvG+ EvFFv + EFuGv + FFuGu − 2FFuFv

−1

2

(
EuFGv + EuGGu + EEvGv + EvFGu − EvFGu

−EvFGu + (Ev)
2G+ E(Gu)

2
))

We now note:

2WWu = (W 2)u = EuG+ EGu − 2FFu, (C.5)

and a similar formula for WWv, allowing us to regroup as follows:

−2W 4K = (Evv +Guu − 2Fuv)W
2

−1
2
(EuG+ EGu − 2FFu)Gu − 1

2
(EvG+ EGv − 2FFv)Ev

+EuFvG+ EFuGv − 2FFuFv − 1
2
EuFGv + 1

2
EvFGu

= (Evv +Guu − 2Fuv)W
2 −WWuGu −WWvEv + R,

where R denotes the following residual terms:

R = EuFvG+ EFuGv − 2FFuFv − 1
2
(EuGv − EvGu)F.
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These may be written in two ways. First

R = (EuG+ EGu − 2FFu)Fv − EFvGu + EFuGv − 1
2
(EuGv − EvGu)F

= 2WWuFv + E(FuGv − FvGu)− 1
2
F (EuGv − EvGu),

yielding

−2W 4K = W 3

(
∂

∂v

(
Ev
W

)
+

∂

∂u

(
Gu

W

)
− 2

∂

∂u

(
Fv
W

))
+E(FuGv − FvGu)− 1

2
F (EuGv − EvGu). (C.6)

On the other hand

R = (EvG+ EGv − 2FFv)Fu + EuFvG− EvFuG− 1
2
(EuGv − EvGu)F

= 2WWvFu +G(EuFv − EvFu)− 1
2
F (EuGv − EvGu),

yielding

−2W 4K = W 3

(
∂

∂v

(
Ev
W

)
+

∂

∂u

(
Gu

W

)
− 2

∂

∂v

(
Fu
W

))
+G(EuFv − EvFu)− 1

2
F (EuGv − EvGu). (C.7)

We now require a slightly more complicated calculation.

Lemma C.2.
∂

∂v

(FEu
EW

)
− ∂

∂u

(FEv
EW

)
=

1

W 3

(
G(EuFv − EvFu)− 1

2
F (EuGv − EvGu)

)
. (C.8)

∂

∂v

(FGu

GW

)
− ∂

∂u

(FGv

GW

)
=

1

W 3

(
1
2
F (EuGv − EvGu)− E(FuGv − FvGu)

)
. (C.9)

Proof. It suffices to prove (C.8). We have:

E2W 2

(
∂

∂v

(FEu
EW

)
− ∂

∂u

(FEv
EW

))
= EW (EuvF + EuFv)− EuF (EvW + EWv)

−EW (EvuF + EvFu) + EvF (EuW + EWu)

= EW (EuFv − EvFu)− EF (EuWv − EvWu).

Bearing in mind (C.5) we write:

2EW 3

(
∂

∂v

(FEu
EW

)
− ∂

∂u

(FEv
EW

))
= 2W 2(EuFv − EvFu)− F

(
Eu(2WWv)− Ev(2WWu)

)
= 2W 2(EuFv − EvFu)− EuF (EvG+ EGv − 2FFv)

+EvF (EuG+ EGu − 2FFu)

= (2W 2 − 2F 2)(EuFv − EvFu)− EF (EuGv − EvGu)

= 2EG(EuFv − EvFu)− EF (EuGv − EvGu),
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and the result follows on division by 2EW 3. �

Now Brioschi’s formula (C.1) follows from (C.6) and (C.9), whereas (C.2) follows from
(C.7) and (C.8). Formula (C.3) is simply the average of (C.1) and (C.2).
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